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Problems and Solutions

1. Let ABC be a triangle in which no angle is 90◦. For any point P in the plane
of the triangle, let A1, B1, C1 denote the reflections of P in the sides BC,CA,AB
respectively. Prove the following statements:

(a) If P is the incentre or an excentre of ABC, then P is the circumcentre of A1B1C1;

(b) If P is the circumcentre of ABC, then P is the orthocentre of A1B1C1;

(c) If P is the orthocentre of ABC, then P is either the incentre or an excentre of
A1B1C1.

Solution:
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If P = I is the incentre of triangle ABC, and r its inradius, then it is clear that
A1I = B1I = C1I = 2r. It follows that I is the circumcentre of A1B1C1. On the
otherhand if P = I1 is the excentre of ABC opposite A and r1 the corresponding ex-
radius, then again we see that A1I1 = B1I1 = C1I1 = 2r1. Thus I1 is the circumcentre
of A1B1C1.
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(b)

Let P = O be the circumcentre of ABC. By definition, it follows that OA1 bisects
and is bisected by BC and so on. Let D,E,F be the mid-points of BC,CA,AB
respectively. Then FE is parallel to BC. But E,F are also mid-points of OB1, OC1

and hence FE is parallel to B1C1 as well. We conclude that BC is parallel to B1C1.
Since OA1 is perpendicular to BC, it follows that OA1 is perpendicular to B1C1.
Similarly OB1 is perpendicular to C1A1 and OC1 is perpendicular to A1B1. These
imply that O is the orthocentre of A1B1C1. (This applies whether O is inside or
outside ABC.)

(c)

let P = H, the orthocentre of ABC. We consider two possibilities; H falls inside
ABC and H falls outside ABC.

Suppose H is inside ABC; this happens if ABC is an acute triangle. It is known
that A1, B1, C1 lie on the circumcircle of ABC. Thus ∠C1A1A = ∠C1CA = 90◦ −A.
Similarly ∠B1A1A = ∠B1BA = 90◦ − A. These show that ∠C1A1A = ∠B1A1A.
Thus A1A is an internal bisector of ∠C1A1B1. Similarly we can show that B1 bisects
∠A1B1C1 and C1C bisects ∠B1C1A1. Since A1A,B1B,C1C concur at H, we conclude
that H is the incentre of A1B1C1.

OR If D,E,F are the feet of perpendiculars of A,B,C to the sides BC,CA,AB
respectively, then we see that EF,FD,DE are respectively parallel to B1C1, C1A1,
A1B1. This implies that ∠C1A1H = ∠FDH = ∠ABE = 90◦ − A, as BDHF is a
cyclic quadrilateral. Similarly, we can show that ∠B1A1H = 90◦ − A. It follows that
A1H is the internal bisector of ∠C1A1B1. We can proceed as in the earlier case.

If H is outside ABC, the same proofs go through again, except that two of A1H,
B1H, C1H are external angle bisectors and one of these is an internal angle bisector.
Thus H becomes an excentre of triangle A1B1C1.
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2. Show that the equation

x2 + y2 + z2 = (x − y)(y − z)(z − x)

has infinitely many solutions in integers x, y, z.

Solution: We seek solutions (x, y, z) which are in arithmetic progression. Let us put
y − x = z − y = d > 0 so that the equation reduces to the form

3y2 + 2d2 = 2d3.

Thus we get 3y2 = 2(d − 1)d2. We conclude that 2(d − 1) is 3 times a square. This
is satisfied if d − 1 = 6n2 for some n. Thus d = 6n2 + 1 and 3y2 = d2 · 2(6n2) giving
us y2 = 4d2n2. Thus we can take y = 2dn = 2n(6n2 + 1). From this we obtain
x = y − d = (2n− 1)(6n2 + 1), z = y + d = (2n + 1)(6n2 + 1). It is easily verified that

(x, y, z) = ((2n − 1)(6n2 + 1), 2n(6n2 + 1), (2n + 1)(6n2 + 1)),

is indeed a solution for a fixed n and this gives an infinite set of solutions as n varies
over natural numbers.

3. If a, b, c are positive real numbers such that abc = 1, prove that

ab+c bc+a ca+b ≤ 1.

Solution: Note that the inequality is symmetric in a, b, c so that we may assume that
a ≥ b ≥ c. Since abc = 1, it follows that a ≥ 1 and c ≤ 1. Using b = 1/ac, we get

ab+c bc+a ca+b =
ab+cca+b

ac+acc+a
=

cb−c

aa−b
≤ 1,

because c ≤ 1, b ≥ c, a ≥ 1 and a ≥ b.

4. Given any nine integers show that it is possible to choose, from among them, four
integers a, b, c, d such that a + b − c − d is divisible by 20. Further show that such a
selection is not possible if we start with eight integers instead of nine.

Solution:

Suppose there are four numbers a, b, c, d among the given nine numbers which leave
the same remainder modulo 20. Then a + b ≡ c + d (mod 20) and we are done.

If not, there are two possibilities:

(1) We may have two disjoint pairs {a, c} and {b, d} obtained from the given nine
numbers such that a ≡ c (mod 20) and b ≡ d (mod 20). In this case we get a+b ≡ c+d
(mod 20).
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(2) Or else there are at most three numbers having the same remainder modulo 20 and
the remaining six numbers leave distinct remainders which are also different from the
first remainder (i.e., the remainder of the three numbers). Thus there are at least 7
disinct remainders modulo 20 that can be obtained from the given set of nine numbers.
These 7 remainders give rise to

(

7

2

)

= 21 pairs of numbers. By pigeonhole principle,
there must be two pairs (r1, r2), (r3, r4) such that r1 + r2 ≡ r3 + r4 (mod 20). Going
back we get four numbers a, b, c, d such that a + b ≡ c + d (mod 20).

If we take the numbers 0, 0, 0, 1, 2, 4, 7, 12, we check that the result is not true for these
eight numbers.

5. Let ABC be a triangle and D be the mid-point of side BC. Suppose ∠DAB = ∠BCA
and ∠DAC = 15◦. Show that ∠ADC is obtuse. Further, if O is the circumcentre of
ADC, prove that triangle AOD is equilateral.

Solution:

A

B C
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Let α denote the equal angles ∠BAD = ∠DCA. Using sine rule in triangles DAB
and DAC, we get

AD

sinB
=

BD

sin α
,

CD

sin 15◦
=

AD

sin α
.

Eliminating α (using BD = DC and 2α+B +15◦ = π), we obtain 1+cos(B +15◦) =
2 sin B sin 15◦. But we know that 2 sin B sin 15◦ = cos(B−15◦)−cos(B+15◦). Putting
β = B − 15◦, we get a relation 1 + 2 cos(β + 30) = cos β. We write this in the form

(1 −
√

3) cos β + sin β = 1.

Since sin β ≤ 1, it follows that (1 −
√

3) cos β ≥ 0. We conclude that cos β ≤ 0 and
hence that β is obtuse. So is angle B and hence ∠ADC.
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We have the relation (1 −
√

3) cos β + sin β = 1. If we set x = tan(β/2), then we get,
using cos β = (1 − x2)/(1 + x2), sin β = 2x/(1 + x2),

(
√

3 − 2)x2 + 2x −
√

3 = 0.

Solving for x, we obtain x = 1 or x =
√

3(2 +
√

3). If x =
√

3(2 +
√

3), then
tan(β/2) > 2 +

√
3 = tan 75◦ giving us β > 150◦. This forces that B > 165◦ and

hence B + A > 165◦ + 15◦ = 180◦, a contradiction. thus x = 1 giving us β = π/2.
This gives B = 105◦ and hence α = 30◦. Thus ∠DAO = 60◦. Since OA = OD, the
result follows.

OR

Let ma denote the median AD. Then we can compute

cos α =
c2 + m2

a − (a2/4)

2cma

, sin α =
2∆

cma

,

where ∆ denotes the area of triangle ABC. These two expressions give

cot α =
c2 + m2

a − (a2/4)

4∆
.

Similarly, we obtain

cot ∠CAD =
b2 + m2

a − (a2/4)

4∆
.

Thus we get

cot α − cot 15◦ =
c2 − a2

4∆
.

Similarly we can also obtain

cot B − cot α =
c2 − a2

4∆
,

giving us the relation
cot B = 2cot α − cot 15◦.

If B is acute then 2 cot α > cot 15◦ = 2+
√

3 > 2
√

3. It follows that cot α >
√

3. This
implies that α < 30◦ and hence

B = 180◦ − 2α − 15◦ > 105◦.

This contradiction forces that angle B is obtuse and consequently ∠ADC is obtuse.

Since ∠BAD = α = ∠ACD, the line AB is tangent to the circumcircle Γ of ADC at
A. Hence OA is perpendicular to AB. Draw DE and BF perpendicular to AC, and
join OD. Since ∠DAC = 15◦, we see that ∠DOC = 30◦ and hence DE = OD/2.
But DE is parallel to BF and BD = DC shows that BF = 2DE. We conclude that
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BF = DO. But DO = AO, both being radii of Γ. Thus BF = AO. Using right
triangles BFO and BAO, we infer that AB = OF . We conclude that ABFO is a
rectangle. In particular ∠AOF = 90◦. It follows that

∠AOD = 90◦ − ∠DOC = 90◦ − 30◦ = 60◦.

Since OA = OD, we conclude that AOD is equilateral.

OR

Note that triangles ABD and CBA are similar. Thus we have the ratios

AB

BD
=

CB

BA
.

This reduces to a2 = 2c2 giving us a =
√

2c. This is equivalent to sin2(α + 15◦) =
2 sin2 α. We write this in the form

cos 15◦ + cot α sin 15◦ =
√

2.

Solving for cot α, we get cot α =
√

3. We conclude that α = 30◦, and the result
follows.

6. Let R denote the set of all real numbers. Find all functions f : R → R satisfying the
condition

f(x + y) = f(x)f(y)f(xy)

for all x, y in R.

Solution: Putting x = 0, y = 0, we get f(0) = f(0)3 so that f(0) = 0, 1 or −1. If
f(0) = 0, then taking y = 0 in the given equation, we obtain f(x) = f(x)f(0)2 = 0
for all x.

Suppose f(0) = 1. Taking y = −x, we obtain

1 = f(0) = f(x − x) = f(x)f(−x)f(−x2).

This shows that f(x) 6= 0 for any x ∈ R. Taking x = 1, y = x − 1, we obtain

f(x) = f(1)f(x − 1)2 = f(1) [f(x)f(−x)f(−x)]2 .

Using f(x) 6= 0, we conclude that 1 = kf(x)(f(−x))2, where k =
f(1)(f(−1))2. Changing x to −x here, we also infer that 1 = kf(−x)(f(x))2. Com-
paring these expressions we see that f(−x) = f(x). It follows that 1 = kf(x)3. Thus
f(x) is constant for all x. Since f(0) = 1, we conclude that f(x) = 1 for all real x.

If f(0) = −1, a similar analysis shows that f(x) = −1 for all x ∈ R. We can verify
that each of these functions satisfies the given functional equation. Thus there are
three solutions, all of them being constant functions.
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