Regional Mathematical Olympiad-2000
 Problems and Solutions

1. Let $A C$ be a line segment in the plane and B a point between A and C. Construct isosceles triangles $P A B$ and $Q B C$ on one side of the segment $A C$ such that $\angle A P B=\angle B Q C=120^{\circ}$ and an isosceles triangle $R A C$ on the otherside of $A C$ such that $\angle A R C=120^{\circ}$. Show that $P Q R$ is an equilateral triangle.

Solution: We give here 2 different solutions.

1. Drop perpendiculars from P and Q to $A C$ and extend them to meet $A R, R C$ in K, L respectively. Join $K B, P B, Q B, L B, K L$.(Fig.1.)

Fig. 1

Fig. 2

Observe that K, B, Q are collinear and so are P, B, L. (This is because $\angle Q B C=$ $\angle P B A=\angle K B A$ and similarly $\angle P B A=\angle C B L$.) By symmetry we see that $\angle K P Q=\angle P K L$ and $\angle K P B=\angle P K B$. It follows that $\angle L P Q=\angle L K Q$ and hence K, L, Q, P are concyclic. We also note that $\angle K P L+\angle K R L=60^{\circ}+120^{\circ}=180^{\circ}$. This implies that P, K, R, L are concyclic. We conclude that P, K, R, L, Q are concyclic. This gives

$$
\angle P R Q=\angle P K Q=60^{\circ}, \quad \angle R P Q=\angle R K Q=\angle R A P=60^{\circ} .
$$

2. Produce $A P$ and $C Q$ to meet at K. Observe that $A K C R$ is a rhombus and $B Q K P$ is a parallelogram.(See Fig.2.) Put $A P=x, C Q=y$. Then $P K=B Q=y$, $K Q=P B=x$ and $A R=R C=C K=K A=x+y$. Using cosine rule in triangle $P K Q$, we get $P Q^{2}=x^{2}+y^{2}-2 x y \cos 120^{\circ}=x^{2}+y^{2}+x y$. Similarly cosine rule in triangle $Q C R$ gives $Q R^{2}=y^{2}+(x+y)^{2}-2 x y \cos 60^{\circ}=x^{2}+y^{2}+x y$ and cosine rule in triangle $P A R$ gives $R P^{2}=x^{2}+(x+y)^{2}-2 x y \cos 60^{\circ}=x^{2}+y^{2}+x y$. It follows that $P Q=Q R=R P$.
3. Solve the equation $y^{3}=x^{3}+8 x^{2}-6 x+8$, for positive integers x and y.

Solution: We have

$$
y^{3}-(x+1)^{3}=x^{3}+8 x^{2}-6 x+8-\left(x^{3}+3 x^{2}+3 x+1\right)=5 x^{2}-9 x+7
$$

Consider the quadratic equation $5 x^{2}-9 x+7=0$. The discriminant of this equation is $D=9^{2}-4 \times 5 \times 7=-59<0$ and hence the expression $5 x^{2}-9 x+7$ is positive for all real values of x. We conclude that $(x+1)^{3}<y^{3}$ and hence $x+1<y$.
On the other hand we have

$$
(x+3)^{3}-y^{3}=x^{3}+9 x^{2}+27 x+27-\left(x^{3}+8 x^{2}-6 x+8\right)=x^{2}+33 x+19>0
$$

for all positive x. We conclude that $y<x+3$. Thus we must have $y=x+2$. Putting this value of y, we get

$$
0=y^{3}-(x+2)^{3}=x^{3}+8 x^{2}-6 x+8-\left(x^{3}+6 x^{2}+12 x+8\right)=2 x^{2}-18 x
$$

We conclude that $x=0$ and $y=2$ or $x=9$ and $y=11$.
3. Suppose $\left\langle x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\rangle$ is a sequence of positive real numbers such that $x_{1} \geq x_{2} \geq$ $x_{3} \geq \cdots \geq x_{n} \cdots$, and for all n

$$
\frac{x_{1}}{1}+\frac{x_{4}}{2}+\frac{x_{9}}{3}+\cdots+\frac{x_{n^{2}}}{n} \leq 1
$$

Show that for all k the following inequality is satisfied:

$$
\frac{x_{1}}{1}+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\cdots+\frac{x_{k}}{k} \leq 3
$$

Solution: Let k be a natural number and n be the unique integer such that $(n-1)^{2} \leq$ $k<n^{2}$. Then we see that

$$
\begin{aligned}
& \sum_{r=1}^{k} \frac{x_{r}}{r} \leq\left(\frac{x_{1}}{1}+\frac{x_{2}}{2}+\frac{x_{3}}{3}\right)+\left(\frac{x_{4}}{4}+\frac{x_{5}}{5}+\cdots+\frac{x_{8}}{8}\right) \\
&+\cdots+\left(\frac{x_{(n-1)^{2}}}{(n-1)^{2}}+\cdots+\frac{x_{k}}{k}+\cdots+\frac{x_{n^{2}-1}}{n^{2}-1}\right) \\
& \leq\left(\frac{x_{1}}{1}+\frac{x_{1}}{1}+\frac{x_{1}}{1}\right)+\left(\frac{x_{4}}{4}+\frac{x_{4}}{4}+\cdots+\frac{x_{4}}{4}\right) \\
&+\cdots+\left(\frac{\left.x_{(n-1)^{2}}^{(n-1)^{2}}+\cdots+\frac{x_{(n-1)^{2}}}{(n-1)^{2}}\right)}{=}\right. \\
& \frac{3 x_{1}}{1}+\frac{5 x_{2}}{4}+\cdots+\frac{(2 n-1) x_{(n-1)^{2}}}{(n-1)^{2}} \\
&= \sum_{r=1}^{n-1} \frac{(2 r+1) x_{r^{2}}}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{r=1}^{n-1} \frac{3 r}{r^{2}} x_{r^{2}} \\
& =3 \sum_{r=1}^{n-1} \frac{x_{r^{2}}}{r} \leq 3
\end{aligned}
$$

where the last inequality follows from the given hypothesis.
4. All the 7 -digit numbers containing each of the digits $1,2,3,4,5,6,7$ exactly once, and not divisible by 5 , are arranged in the increasing order. Find the 2000 -th number in this list.

Solution: The number of 7-digit numbers with 1 in the left most place and containing each of the digits $1,2,3,4,5,6,7$ exactly once is $6!=720$. But 120 of these end in 5 and hence are divisible by 5 . Thus the number of 7 -digit numbers with 1 in the left most place and containing each of the digits $1,2,3,4,5,6,7$ exactly once but not divisible by 5 is 600 . Similarly the number of 7 -digit numbers with 2 and 3 in the left most place and containing each of the digits $1,2,3,4,5,6,7$ exactly once but not divisible by 5 is also 600 each. These account for 1800 numbers. Hence 2000-th number must have 4 in the left most place.

Again the number of such 7-digit numbers beginning with 41,42 and not divisible by 5 is $120-24=96$ each and these account for 192 numbers. This shows that 2000 -th number in the list must begin with 43 .
The next 8 numbers in the list are: 4312567, 4312576, 4312657, 4312756, 4315267, 4315276, 4315627 and 4315672 . Thus 2000-th number in the list is 4315672 .
5. The internal bisector of angle A in a triangle $A B C$ with $A C>A B$, meets the circumcircle Γ of the triangle in D. Join D to the centre O of the circle Γ and suppose $D O$ meets $A C$ in E, possibly when extended. Given that $B E$ is perpendicular to $A D$, show that $A O$ is parallel to $B D$.

Solution: We consider here the case when $A B C$ is an acute-angled triangle; the cases when $\angle A$ is obtuse or one of the angles $\angle B$ and $\angle C$ is obtuse may be handled similarly.

Let M be the point of intersection of $D E$ and $B C$; let $A D$ intersect $B E$ in N. Since $M E$ is the perpendicular bisector of $B C$, we have $B E=C E$. Since $A N$ is the internal bisector of $\angle A$, and is perpendicular to $B E$, it must bisect $B E$; i.e., $B N=N E$. This in turn implies that $D N$ bisects $\angle B D E$. But $\angle B D A=\angle B C A=\angle C$. Thus $\angle O D A=\angle C$. Since $O D=O A$, we get $\angle O A D=\angle C$. It follows that $\angle B D A=\angle C=\angle O A D$. This implies that $O A$ is parallel to $B D$.
6. (i) Consider two positive integers a and b which are such that $\boldsymbol{a}^{\boldsymbol{a}} \boldsymbol{b}^{\boldsymbol{b}}$ is divisible by 2000 . What is the least possible value of the product $a b$?
(ii) Consider two positive integers a and b which are such that $\boldsymbol{a}^{\boldsymbol{b}} \boldsymbol{b}^{\boldsymbol{a}}$ is divisible by 2000. What is the least possible value of the product $a b$?

Solution: We have $2000=2^{4} 5^{3}$.
(i) Since 2000 divides $a^{a} b^{b}$, it follows that 2 divides a or b and similarly 5 divides a or b. In any case 10 divides $a b$. Thus the least possible value of $a b$ for which $2000 \mid a^{a} b^{b}$ must be a multiple of 10 . Since 2000 divides $10^{10} 1^{1}$, we can take $a=10, b=1$ to get the least value of $a b$ equal to 10 .
(ii) As in (i) we conclude that 10 divides $a b$. Thus the least value of $a b$ for which $2000 \mid a^{b} b^{a}$ is again a multiple of 10 . If $a b=10$, then the possibilities are $(a, b)=$ $(1,10),(2,5),(5,2),(10,1)$. But in all these cases it is easy to verify that 2000 does not divide $a^{b} b^{a}$. The next multiple of 10 is 20 . In this case we can take $(a, b)=(4,5)$ and verify that 2000 divides $4^{5} 5^{4}$. Thus the least value here is 20 .
7. Find all real values of a for which the equation $x^{4}-2 a x^{2}+x+a^{2}-a=0$ has all its roots real.

Solution: Let us consider $x^{4}-2 a x^{2}+x+a^{2}-a=0$ as a quadratic equation in a. We see that thee roots are

$$
a=x^{2}+x, \quad a=x^{2}-x+1
$$

Thus we get a factorisation

$$
\left(a-x^{2}-x\right)\left(a-x^{2}+x-1\right)=0
$$

It follows that $x^{2}+x=a$ or $x^{2}-x+1=a$. Solving these we get

$$
x=\frac{-1 \pm \sqrt{1+4 a}}{2}, \quad \text { or } \quad x=\frac{-1 \pm \sqrt{4 a-3}}{2} .
$$

Thus all the four roots are real if and only if $a \geq 3 / 4$.

