
Solutions to CRMO-2003

1. Let ABC be a triangle in which AB = AC and ∠CAB = 90◦. Suppose M and
N are points on the hypotenuse BC such that BM2 + CN2 = MN2. Prove that
∠MAN = 45◦.

Solution:

Draw CP perpendicular to CB and BQ perpendicular to CB such that CP = BM ,
BQ = CN . Join PA, PM , PN , QA, QM , QN . (See Fig. 1.)
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Fig.  1.

In triangles CPA and BMA, we have ∠PCA = 45◦ = ∠MBA; PC = MB, CA =
BA. So △CPA ≡ △BMA. Hence ∠PAC = ∠BAM = α, say. Consequently,
∠MAP = ∠BAC = 90◦, whence PAMC is a cyclic quadrilateral. Therefore ∠PMC =
∠PAC = α. Again PN2 = PC2 +CN2 = BM2 +CN2 = MN2. So PN = MN , giv-
ing ∠NPM = ∠NMP = α, in △PMN . Hence ∠PNC = 2α. Likewise ∠QMB = 2β,
where β = ∠CAN . Also △NCP ≡ △QBM , as CP = BM,NC = BQ and
∠NCP = 90◦ = ∠QBM . Therefore, ∠CPN = ∠BMQ = 2β, whence 2α + 2β = 90◦;
α + β = 45◦; finally ∠MAN = 90◦ − (α + β) = 45◦.

Aliter: Let AB = AC = a, so that BC =
√

2a; and ∠MAB = α,∠CAN = β.(See
Fig. 2.)

By the Sine Law, we have from △ABM that

BM

sin α
=

AB

sin(α + 45◦)
.



So BM =
a
√

2 sin α

cos α + sin α
=

a
√

2u

1 + u
, where u = tan α.
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Fig.  2.

Similarly CN =
a
√

2v

1 + v
, where v = tan β. But

BM2 + CN2 = MN2 = (BC − MB − NC)2

= BC2 + BM2 + CN2

− 2BC · MB − 2BC · NC + MB · NC.

So
BC2 − 2BC · MB − 2BC · NC + 2MB · NC = 0.

This reduces to

2a2 − 2
√

2a
a
√

2u

1 + u
− 2

√
2a

a
√

2v

1 + v
+

4a2uv

(1 + u)(1 + v)
= 0.

Multiplying by (1 + u)(1 + v)/2a2, we obtain

(1 + u)(1 + v) − 2u(1 + v) − 2v(1 + u) + 2uv = 0.

Simplification gives 1 − u − v − uv = 0. So

tan(α + β) =
u + v

1 − uv
= 1.

This gives α + β = 45◦,whence ∠MAN = 45◦, as well.
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2. If n is an integer greater than 7, prove that

(

n

7

)

−
[n

7

]

is divisible by 7.
[

Here

(

n

7

)

denotes the number of ways of choosing 7 objects from among n objects; also, for any
real number x, [x] denotes the greatest integer not exceeding x.

]

Solution: We have
(

n

7

)

=
n(n − 1)(n − 2) . . . (n − 6)

7!
.

In the numerator, there is a factor divisible by 7, and the other six factors leave the
remainders 1,2,3,4,5,6 in some order when divided by 7.

Hence the numerator may be written as

7k · (7k1 + 1) · (7k2 + 2) · · · (7k6 + 6).

Also we conclude that
[n

p

]

= k, as in the set
{

n, n − 1, . . . n − 6
}

, 7k is the only

number which is a multiple of 7. If the given number is called Q, then

Q = 7k · (7k1 + 1)(7k2 + 2) . . . (7k6 + 6)

7!
− k

= k

[

(7k1 + 1) . . . (7k6 + 6) − 6!

6!

]

=
k[7t + 6! − 6!]

6!

=
7tk

6!
.

We know that Q is an integer, and so 6! divides 7tk. Since gcd(7, 6!) = 1, even after
cancellation there is a factor of 7 still left in the numerator. Hence 7 divides Q, as
desired.

3. Let a, b, c be three positive real numbers such that a + b + c = 1. Prove that among
the three numbers a − ab, b − bc, c − ca there is one which is at most 1/4 and there
is one which is at least 2/9.

Solution: By AM-GM inequality, we have

a(1 − a) ≤
(

a + 1 − a

2

)2

=
1

4
.

Similarly we also have

b(1 − b) ≤ 1

4
and c(1 − c) ≤ 1

4
.

Multiplying these we obtain

abc(1 − a)(1 − b)(1 − c) ≤ 1

43
.
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We may rewrite this in the form

a(1 − b) · b(1 − c) · c(1 − a) ≤ 1

43
.

Hence one factor at least
(

among a(1 − b), b(1 − c), c(1 − a)
)

has to be less than or

equal to
1

4
; otherwise lhs would exceed

1

43
.

Again consider the sum a(1−b)+b(1−c)+c(1−a). This is equal to a+b+c−ab−bc−ca.
We observe that

3
(

ab + bc + ca
)

≤
(

a + b + c
)2

,

which, in fact, is equivalent to (a − b)2 + (b − c)2 + (c − a)2 ≥ 0. This leads to the
inequality

a + b + c − ab − bc − ca ≥ (a + b + c) − 1

3
(a + b + c)2 = 1 − 1

3
=

2

3
.

Hence one summand at least
(

among a(1 − b), b(1 − c), c(1 − a)
)

has to be greater

than or equal to
2

9
;
(

otherwise lhs would be less than
2

3
.
)

4. Find the number of ordered triples (x, y, z) of nonnegative integers satisfying the
conditions:

(i) x ≤ y ≤ z;

(ii) x + y + z ≤ 100.

Solution: We count by brute force considering the cases x = 0, x = 1, . . . , x = 33.
Observe that the least value x can take is zero, and its largest value is 33.

x = 0 If y = 0, then z ∈
{

0, 1, 2, . . . , 100
}

; if y=1, then z ∈
{

1, 2, . . . , 99
}

; if y = 2,
then z ∈

{

2, 3, . . . , 98
}

; and so on. Finally if y = 50, then z ∈ {50}. Thus there are
altogether 101 + 99 + 97 + · · · + 1 = 512 possibilities.

x = 1. Observe that y ≥ 1. If y = 1, then z ∈
{

1, 2, . . . , 98
}

; if y = 2, then z ∈
{

2, 3, . . . , 97
}

; if y = 3, then z ∈
{

3, 4, . . . , 96
}

; and so on. Finally if y = 49, then
z ∈

{

49, 50
}

. Thus there are altogether 98 + 96 + 94 + · · · + 2 = 49 · 50 possibilities.

General case. Let x be even, say, x = 2k, 0 ≤ k ≤ 16. If y = 2k, then z ∈
{

2k, 2k + 1, . . . , 100 − 4k
}

; if y = 2k + 1, then z ∈
{

2k + 1, 2k + 2, . . . , 99 − 4k
}

; if
y = 2k + 2, then z ∈

{

2k + 2, 2k + 3, . . . , 99 − 4k
}

; and so on.

Finally, if y = 50 − k, then z ∈
{

50 − k
}

. There are altogether

(101 − 6k) + (99 − 6k) + (97 − 6k) + · · · + 1 = (51 − 3k)2

possibilities.
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Let x be odd, say, x = 2k + 1, 0 ≤ k ≤ 16. If y = 2k + 1, then z ∈
{

2k + 1, 2k +
2, . . . , 98 − 4k

}

; if y = 2k + 2, then z ∈
{

2k + 2, 2k + 3, . . . , 97 − 4k
}

; if y = 2k + 3,
then z ∈

{

2k + 3, 2k + 4, . . . , 96 − 4k
}

; and so on.

Finally, if y = 49 − k, then z ∈
{

49 − k, 50 − k
}

. There are altogether

(98 − 6k) + (96 − 6k) + (94 − 6k) + · · · + 2 = (49 − 3k)(50 − 3k)

possibilities.

The last two cases would be as follows:

x = 32: if y = 32, then z ∈
{

32, 33, 34, 35, 36
}

; if y = 33, then z ∈
{

33, 34, 35
}

; if
y = 34, then z ∈

{

34
}

; altogether 5 + 3 + 1 = 9 = 32 possibilities.

x = 33: if y = 33, then z ∈
{

33, 34
}

; only 2=1.2 possibilities.

Thus the total number of triples, say T, is given by,

T =

16
∑

k=0

(51 − 3k)2 +

16
∑

k=0

(49 − 3k)(50 − 3k).

Writing this in the reverse order, we obtain

T =

17
∑

k=1

(3k)2 +

17
∑

k=0

(3k − 2)(3k − 1)

= 18

17
∑

k=1

k2 − 9

17
∑

k=1

k + 34

= 18

(

17 · 18 · 35
6

)

− 9

(

17 · 18
2

)

+ 34

= 30, 787.

Thus the answer is 30787.

Aliter

It is known that the number of ways in which a given positive integer n ≥ 3 can be
expressed as a sum of three positive integers x, y, z (that is, x + y + z = n), subject

to the condition x ≤ y ≤ z is

{

n2

12

}

, where {a} represents the integer closest to a. If

zero values are allowed for x, y, z then the corresponding count is

{

(n + 3)2

12

}

, where

now n ≥ 0.

Since in our problem n = x + y + z ∈
{

0, 1, 2, . . . , 100
}

, the desired answer is

100
∑

n=0

{

(n + 3)2

12

}

.
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For n = 0, 1, 2, 3, . . . , 11, the corrections for {} to get the nearest integers are

3

12
,
−4

12
,
−1

12
, 0,

−1

12
,
−4

12
,

3

12
,
−4

12
,
−1

12
, 0,

−1

12
,
−4

12
.

So, for 12 consecutive integer values of n, the sum of the corrections is equal to

(

3 − 4 − 1 − 0 − 1 − 4 − 3

12

)

× 2 =
−7

6
.

Since
101

12
= 8 +

5

12
, there are 8 sets of 12 consecutive integers in

{

3,4,5, ... ,103
}

with 99,100,101,102,103 still remaining. Hence the total correction is

(−7

6

)

× 8 +
3 − 4 − 1 − 0 − 1

12
=

−28

3
− 1

4
=

−115

12
.

So the desired number T of triples (x, y, z) is equal to

T =

100
∑

n=0

(n + 3)2

12
− 115

12

=

(

12 + 22 + 32 + · · · + 1032
)

−
(

12 + 22
)

12
− 115

12

=
103 · 104 · 207

6 · 12 − 5

12
− 115

12
= 30787.

5. Suppose P is an interior point of a triangle ABC such that the ratios

d(A,BC)

d(P,BC)
,

d(B,CA)

d(P,CA)
,

d(C,AB)

d(P,AB)

are all equal. Find the common value of these ratios.
[

Here d(X,Y Z) denotes the
perpendicular distance from a point X to the line Y Z.

]

Solution: Let AP,BP,CP when extended, meet the sides BC,CA,AB in D,E,F
respectively. Draw AK,PL perpendicular to BC with K,L on BC.(See Fig. 3.)
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Now
d(A,BC)

d(P,BC)
=

AK

PL
=

AD

PD
.

Similarly,
d(B,CA)

d(P,CA)
=

BE

PE
and

d(C,AB)

d(P,AB)
=

CF

PF
.

So, we obtain

AD

PD
=

BE

PE
=

CF

PF
, and hence

AP

PD
=

BP

PE
=

CP

PF
.

From
AP

PD
=

BP

PE
and ∠APB = ∠DPE, it follows that triangles APB and DPE are

similar. So ∠ABP = ∠DEP and hence AB is parallel to DE.

Similarly, BC is parallel to EF and CA is parallel to DF . Using these we obtain

BD

DC
=

AE

EC
=

AF

FB
=

DC

BD
,

whence BD2 = CD2 or which is same as BD = CD. Thus D is the midpoint of BC.
Similarly E,F are the midpoints of CA and AB respectively.

We infer that AD,BE,CF are indeed the medians of the triangle ABC and hence P
is the centroid of the triangle. So

AD

PD
=

BE

PE
=

CF

PF
= 3,

and consequently each of the given ratios is also equal to 3.

Aliter

7



Let ABC, the given triangle be placed in the xy-plane so that B = (0, 0), C = (a, 0)
(on the x- axis). (See Fig. 4.)

Let A = (h, k) and P = (u, v). Clearly d(A,BC) = k and d(P,BC) = v, so that

d(A,BC)

d(P,BC)
=

k

v
.

The equation to CA is kx − (h − a)y − ka = 0. So

d(B,CA)

d(P,CA)
=

−ka
√

k2 + (h − a)2

/

(ku − (h − a)v − ka)
√

k2 + (h − a)2

=
−ka

ku − (h − a)v − ka
.

Again the equation to AB is kx − hy = 0. Therefore

d(C,AB)

d(P,AB)
=

ka√
h2 + k2

/

(ku − hv)√
h2 + k2

=
ka

ku − hv
.

From the equality of these ratios, we get

k

v
=

−ka

ku − (h − a)v − ka
=

ka

ku − hv
.

The equality of the first and third ratios gives ku−(h+a)v = 0. Similarly the equality
of second and third ratios gives 2ku − (2h − a)v = ka. Solving for u and v, we get

u =
h + a

3
, v =

k

3
.

Thus P is the centroid of the triangle and each of the ratios is equal to
k

v
= 3.

6. Find all real numbers a for which the equation

x2 + (a − 2)x + 1 = 3|x|

has exactly three distinct real solutions in x.

Solution: If x ≥ 0, then the given equation assumes the form,

x2 + (a − 5)x + 1 = 0. · · ·(1)

If x < 0, then it takes the form

x2 + (a + 1)x + 1 = 0. · · ·(2)

For these two equations to have exactly three distinct real solutions we should have
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(I) either (a − 5)2 > 4 and (a + 1)2 = 4;

(II) or (a − 5)2 = 4 and (a + 1)2 > 4.

Case (I) From (a+1)2 = 4, we have a = 1 or -3. But only a = 1 satisfies (a−5)2 > 4.

Thus a = 1. Also when a = 1, equation (1) has solutions x = 2 +
√

3; and (2) has
solutions x = −1,−1. As 2 ±

√
3 > 0 and −1 < 0, we see that a = 1 is indeed a

solution.

Case (II) From (a − 5)2 = 4, we have a=3 or 7. Both these values of a satisfy the

inequality (a + 1)2 > 4. When a = 3, equation (1) has solutions x = 1, 1 and (2) has
the solutions x = −2±

√
3. As 1 > 0 and −2±

√
3 < 0, we see that a = 3 is in fact a

solution.

When a = 7, equation (1) has solutions x = −1,−1, which are negative contradicting
x ≥ 0.

Thus a = 1, a = 3 are the two desired values.

7. Consider the set X =
{

1, 2, 3, . . . , 9, 10
}

. Find two disjoint nonempty subsets A and
B of X such that

(a) A ∪ B = X;

(b) prod(A) is divisible by prod(B), where for any finite set of numbers C, prod(C)
denotes the product of all numbers in C ;

(c) the quotient prod(A)/prod(B) is as small as possible.

Solution: The prime factors of the numbers in set
{

1,2,3, . . . , 9,10
}

are 2,3,5,7. Also
only 7 ∈ X has the prime factor 7. Hence it cannot appear in B. For otherwise, 7 in
the denominator would not get canceled. Thus 7 ∈ A.

Hence
prod(A)/prod(B) ≥ 7.

The numbers having prime factor 3 are 3,6,9. So 3 and 6 should belong to one of A
and B, and 9 belongs to the other. We may take 3, 6 ∈ A, 9 ∈ B.

Also 5 divides 5 and 10. We take 5 ∈ A, 10 ∈ B. Finally we take 1, 2, 4 ∈ A, 8 ∈ B.
Thus

A =
{

1, 2, 3, 4, 5, 6, 7
}

, B =
{

8, 9, 10
}

,

so that
prod(A)

prod(B)
=

1 · 2 · 3 · 4 · 5 · 6 · 7
8 · 9 · 10 = 7.

Thus 7 is the minimum value of
prod(A)

prod(B)
. There are other possibilities for A and

B: e.g., 1 may belong to either A or B. We may take A =
{

3, 5, 6, 7, 8
}

, B =
{

1, 2, 4, 9, 10
}

.
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