Solutions to CRMO-2003

1. Let $A B C$ be a triangle in which $A B=A C$ and $\angle C A B=90^{\circ}$. Suppose M and N are points on the hypotenuse $B C$ such that $B M^{2}+C N^{2}=M N^{2}$. Prove that $\angle M A N=45^{\circ}$.

Solution:

Draw $C P$ perpendicular to $C B$ and $B Q$ perpendicular to $C B$ such that $C P=B M$, $B Q=C N$. Join $P A, P M, P N, Q A, Q M, Q N$. (See Fig. 1.)

Fig. 1.

In triangles $C P A$ and $B M A$, we have $\angle P C A=45^{\circ}=\angle M B A ; P C=M B, C A=$ $B A$. So $\triangle C P A \equiv \triangle B M A$. Hence $\angle P A C=\angle B A M=\alpha$, say. Consequently, $\angle M A P=\angle B A C=90^{\circ}$, whence $P A M C$ is a cyclic quadrilateral. Therefore $\angle P M C=$ $\angle P A C=\alpha$. Again $P N^{2}=P C^{2}+C N^{2}=B M^{2}+C N^{2}=M N^{2}$. So $P N=M N$, giving $\angle N P M=\angle N M P=\alpha$, in $\triangle P M N$. Hence $\angle P N C=2 \alpha$. Likewise $\angle Q M B=2 \beta$, where $\beta=\angle C A N$. Also $\triangle N C P \equiv \triangle Q B M$, as $C P=B M, N C=B Q$ and $\angle N C P=90^{\circ}=\angle Q B M$. Therefore, $\angle C P N=\angle B M Q=2 \beta$, whence $2 \alpha+2 \beta=90^{\circ}$; $\alpha+\beta=45^{\circ}$; finally $\angle M A N=90^{\circ}-(\alpha+\beta)=45^{\circ}$.
$\underline{\text { Aliter: }}$ Let $A B=A C=a$, so that $B C=\sqrt{2} a$; and $\angle M A B=\alpha, \angle C A N=\beta$.(See Fig. 2.)
By the Sine Law, we have from $\triangle A B M$ that

$$
\frac{B M}{\sin \alpha}=\frac{A B}{\sin \left(\alpha+45^{\circ}\right)}
$$

So $B M=\frac{a \sqrt{2} \sin \alpha}{\cos \alpha+\sin \alpha}=\frac{a \sqrt{2} u}{1+u}$, where $u=\tan \alpha$.

Fig. 2.
Similarly $C N=\frac{a \sqrt{2} v}{1+v}$, where $v=\tan \beta$. But

$$
\begin{aligned}
B M^{2}+C N^{2}= & M N^{2}=(B C-M B-N C)^{2} \\
= & B C^{2}+B M^{2}+C N^{2} \\
& -2 B C \cdot M B-2 B C \cdot N C+M B \cdot N C .
\end{aligned}
$$

So

$$
B C^{2}-2 B C \cdot M B-2 B C \cdot N C+2 M B \cdot N C=0 .
$$

This reduces to

$$
2 a^{2}-2 \sqrt{2} a \frac{a \sqrt{2} u}{1+u}-2 \sqrt{2} a \frac{a \sqrt{2} v}{1+v}+\frac{4 a^{2} u v}{(1+u)(1+v)}=0 .
$$

Multiplying by $(1+u)(1+v) / 2 a^{2}$, we obtain

$$
(1+u)(1+v)-2 u(1+v)-2 v(1+u)+2 u v=0 .
$$

Simplification gives $1-u-v-u v=0$. So

$$
\tan (\alpha+\beta)=\frac{u+v}{1-u v}=1 .
$$

This gives $\alpha+\beta=45^{\circ}$, whence $\angle M A N=45^{\circ}$, as well.
2. If n is an integer greater than 7 , prove that $\binom{n}{7}-\left[\frac{n}{7}\right]$ is divisible by 7. [Here $\binom{n}{7}$ denotes the number of ways of choosing 7 objects from among n objects; also, for any real number $x,[x]$ denotes the greatest integer not exceeding x.]

Solution: We have

$$
\binom{n}{7}=\frac{n(n-1)(n-2) \ldots(n-6)}{7!}
$$

In the numerator, there is a factor divisible by 7 , and the other six factors leave the remainders $1,2,3,4,5,6$ in some order when divided by 7 .
Hence the numerator may be written as

$$
7 k \cdot\left(7 k_{1}+1\right) \cdot\left(7 k_{2}+2\right) \cdots\left(7 k_{6}+6\right)
$$

Also we conclude that $\left[\frac{n}{p}\right]=k$, as in the set $\{n, n-1, \ldots n-6\}, 7 k$ is the only number which is a multiple of 7 . If the given number is called Q, then

$$
\begin{aligned}
Q & =7 k \cdot \frac{\left(7 k_{1}+1\right)\left(7 k_{2}+2\right) \ldots\left(7 k_{6}+6\right)}{7!}-k \\
& =k\left[\frac{\left(7 k_{1}+1\right) \ldots\left(7 k_{6}+6\right)-6!}{6!}\right] \\
& =\frac{k[7 t+6!-6!]}{6!} \\
& =\frac{7 t k}{6!}
\end{aligned}
$$

We know that Q is an integer, and so 6 ! divides $7 t k$. Since $\operatorname{gcd}(7,6!)=1$, even after cancellation there is a factor of 7 still left in the numerator. Hence 7 divides Q, as desired.
3. Let a, b, c be three positive real numbers such that $a+b+c=1$. Prove that among the three numbers $a-a b, b-b c, c-c a$ there is one which is at most $1 / 4$ and there is one which is at least $2 / 9$.
Solution: By AM-GM inequality, we have

$$
a(1-a) \leq\left(\frac{a+1-a}{2}\right)^{2}=\frac{1}{4}
$$

Similarly we also have

$$
b(1-b) \leq \frac{1}{4} \quad \text { and } \quad c(1-c) \leq \frac{1}{4}
$$

Multiplying these we obtain

$$
a b c(1-a)(1-b)(1-c) \leq \frac{1}{4^{3}}
$$

We may rewrite this in the form

$$
a(1-b) \cdot b(1-c) \cdot c(1-a) \leq \frac{1}{4^{3}} .
$$

Hence one factor at least (among $a(1-b), b(1-c), c(1-a))$ has to be less than or equal to $\frac{1}{4}$; otherwise lhs would exceed $\frac{1}{4^{3}}$.
Again consider the sum $a(1-b)+b(1-c)+c(1-a)$. This is equal to $a+b+c-a b-b c-c a$. We observe that

$$
3(a b+b c+c a) \leq(a+b+c)^{2}
$$

which, in fact, is equivalent to $(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0$. This leads to the inequality

$$
a+b+c-a b-b c-c a \geq(a+b+c)-\frac{1}{3}(a+b+c)^{2}=1-\frac{1}{3}=\frac{2}{3} .
$$

Hence one summand at least (among $a(1-b), b(1-c), c(1-a))$ has to be greater than or equal to $\frac{2}{9}$; (otherwise lhs would be less than $\frac{2}{3}$.)
4. Find the number of ordered triples (x, y, z) of nonnegative integers satisfying the conditions:
(i) $x \leq y \leq z$;
(ii) $x+y+z \leq 100$.

Solution: We count by brute force considering the cases $x=0, x=1, \ldots, x=33$. Observe that the least value x can take is zero, and its largest value is 33 .
$\underline{\mathrm{x}}=0$ If $y=0$, then $z \in\{0,1,2, \ldots, 100\}$; if $\mathrm{y}=1$, then $z \in\{1,2, \ldots, 99\}$; if $y=2$, then $z \in\{2,3, \ldots, 98\}$; and so on. Finally if $y=50$, then $z \in\{50\}$. Thus there are altogether $101+99+97+\cdots+1=51^{2}$ possibilities.
$\underline{\mathrm{x}=1}$. Observe that $y \geq 1$. If $y=1$, then $z \in\{1,2, \ldots, 98\}$; if $y=2$, then $z \in$ $\{2,3, \ldots, 97\}$; if $y=3$, then $z \in\{3,4, \ldots, 96\}$; and so on. Finally if $y=49$, then $z \in\{49,50\}$. Thus there are altogether $98+96+94+\cdots+2=49 \cdot 50$ possibilities.
General case. Let x be even, say, $x=2 k, 0 \leq k \leq 16$. If $y=2 k$, then $z \in$ $\{2 k, 2 k+1, \ldots, 100-4 k\}$; if $y=2 k+1$, then $z \in\{2 k+1,2 k+2, \ldots, 99-4 k\}$; if $y=2 k+2$, then $z \in\{2 k+2,2 k+3, \ldots, 99-4 k\}$; and so on.
Finally, if $y=50-k$, then $z \in\{50-k\}$. There are altogether

$$
(101-6 k)+(99-6 k)+(97-6 k)+\cdots+1=(51-3 k)^{2}
$$

possibilities.

Let x be odd, say, $x=2 k+1,0 \leq k \leq 16$. If $y=2 k+1$, then $z \in\{2 k+1,2 k+$ $2, \ldots, 98-4 k\}$; if $y=2 k+2$, then $z \in\{2 k+2,2 k+3, \ldots, 97-4 k\}$; if $y=2 k+3$, then $z \in\{2 k+3,2 k+4, \ldots, 96-4 k\}$; and so on.
Finally, if $y=49-k$, then $z \in\{49-k, 50-k\}$. There are altogether

$$
(98-6 k)+(96-6 k)+(94-6 k)+\cdots+2=(49-3 k)(50-3 k)
$$

possibilities.
The last two cases would be as follows:
$\underline{\mathbf{x}=32}$: if $y=32$, then $z \in\{32,33,34,35,36\}$; if $y=33$, then $z \in\{33,34,35\}$; if $y=34$, then $z \in\{34\}$; altogether $5+3+1=9=3^{2}$ possibilities.
$\underline{\mathbf{x}=33:}$ if $y=33$, then $z \in\{33,34\}$; only $2=1.2$ possibilities.
Thus the total number of triples, say T, is given by,

$$
T=\sum_{k=0}^{16}(51-3 k)^{2}+\sum_{k=0}^{16}(49-3 k)(50-3 k)
$$

Writing this in the reverse order, we obtain

$$
\begin{aligned}
T & =\sum_{k=1}^{17}(3 k)^{2}+\sum_{k=0}^{17}(3 k-2)(3 k-1) \\
& =18 \sum_{k=1}^{17} k^{2}-9 \sum_{k=1}^{17} k+34 \\
& =18\left(\frac{17 \cdot 18 \cdot 35}{6}\right)-9\left(\frac{17 \cdot 18}{2}\right)+34 \\
& =30,787
\end{aligned}
$$

Thus the answer is 30787 .

Aliter

It is known that the number of ways in which a given positive integer $n \geq 3$ can be expressed as a sum of three positive integers x, y, z (that is, $x+y+z=n$), subject to the condition $x \leq y \leq z$ is $\left\{\frac{n^{2}}{12}\right\}$, where $\{a\}$ represents the integer closest to a. If zero values are allowed for x, y, z then the corresponding count is $\left\{\frac{(n+3)^{2}}{12}\right\}$, where now $n \geq 0$.

Since in our problem $n=x+y+z \in\{0,1,2, \ldots, 100\}$, the desired answer is

$$
\sum_{n=0}^{100}\left\{\frac{(n+3)^{2}}{12}\right\}
$$

For $n=0,1,2,3, \ldots, 11$, the corrections for $\}$ to get the nearest integers are

$$
\frac{3}{12}, \frac{-4}{12}, \frac{-1}{12}, 0, \frac{-1}{12}, \frac{-4}{12}, \frac{3}{12}, \frac{-4}{12}, \frac{-1}{12}, 0, \frac{-1}{12}, \frac{-4}{12}
$$

So, for 12 consecutive integer values of n, the sum of the corrections is equal to

$$
\left(\frac{3-4-1-0-1-4-3}{12}\right) \times 2=\frac{-7}{6} .
$$

Since $\frac{101}{12}=8+\frac{5}{12}$, there are 8 sets of 12 consecutive integers in $\{3,4,5, \ldots, 103\}$ with $99,100,101,102,103$ still remaining. Hence the total correction is

$$
\left(\frac{-7}{6}\right) \times 8+\frac{3-4-1-0-1}{12}=\frac{-28}{3}-\frac{1}{4}=\frac{-115}{12}
$$

So the desired number T of triples (x, y, z) is equal to

$$
\begin{aligned}
T & =\sum_{n=0}^{100} \frac{(n+3)^{2}}{12}-\frac{115}{12} \\
& =\frac{\left(1^{2}+2^{2}+3^{2}+\cdots+103^{2}\right)-\left(1^{2}+2^{2}\right)}{12}-\frac{115}{12} \\
& =\frac{103 \cdot 104 \cdot 207}{6 \cdot 12}-\frac{5}{12}-\frac{115}{12} \\
& =30787
\end{aligned}
$$

5. Suppose P is an interior point of a triangle $A B C$ such that the ratios

$$
\frac{d(A, B C)}{d(P, B C)}, \quad \frac{d(B, C A)}{d(P, C A)}, \quad \frac{d(C, A B)}{d(P, A B)}
$$

are all equal. Find the common value of these ratios. [Here $d(X, Y Z)$ denotes the perpendicular distance from a point X to the line $Y Z$.]
Solution: Let $A P, B P, C P$ when extended, meet the sides $B C, C A, A B$ in D, E, F respectively. Draw $A K, P L$ perpendicular to $B C$ with K, L on $B C$.(See Fig. 3.)

Fig. 3.

Now

$$
\frac{d(A, B C)}{d(P, B C)}=\frac{A K}{P L}=\frac{A D}{P D} .
$$

Similarly,

$$
\frac{d(B, C A)}{d(P, C A)}=\frac{B E}{P E} \quad \text { and } \frac{d(C, A B)}{d(P, A B)}=\frac{C F}{P F} .
$$

So, we obtain

$$
\frac{A D}{P D}=\frac{B E}{P E}=\frac{C F}{P F}, \quad \text { and hence } \quad \frac{A P}{P D}=\frac{B P}{P E}=\frac{C P}{P F} .
$$

From $\frac{A P}{P D}=\frac{B P}{P E}$ and $\angle A P B=\angle D P E$, it follows that triangles $A P B$ and $D P E$ are similar. So $\angle A B P=\angle D E P$ and hence $A B$ is parallel to $D E$.
Similarly, $B C$ is parallel to $E F$ and $C A$ is parallel to $D F$. Using these we obtain

$$
\frac{B D}{D C}=\frac{A E}{E C}=\frac{A F}{F B}=\frac{D C}{B D},
$$

whence $B D^{2}=C D^{2}$ or which is same as $B D=C D$. Thus D is the midpoint of $B C$. Similarly E, F are the midpoints of $C A$ and $A B$ respectively.
We infer that $A D, B E, C F$ are indeed the medians of the triangle $A B C$ and hence P is the centroid of the triangle. So

$$
\frac{A D}{P D}=\frac{B E}{P E}=\frac{C F}{P F}=3,
$$

and consequently each of the given ratios is also equal to 3 .

Aliter

Let $A B C$, the given triangle be placed in the $x y$-plane so that $B=(0,0), C=(a, 0)$ (on the x - axis). (See Fig. 4.)

Let $A=(h, k)$ and $P=(u, v)$. Clearly $d(A, B C)=k$ and $d(P, B C)=v$, so that

$$
\frac{d(A, B C)}{d(P, B C)}=\frac{k}{v}
$$

The equation to $C A$ is $k x-(h-a) y-k a=0$. So

$$
\begin{aligned}
\frac{d(B, C A)}{d(P, C A)} & =\frac{-k a}{\sqrt{k^{2}+(h-a)^{2}}} / \frac{(k u-(h-a) v-k a)}{\sqrt{k^{2}+(h-a)^{2}}} \\
& =\frac{-k a}{k u-(h-a) v-k a}
\end{aligned}
$$

Again the equation to $A B$ is $k x-h y=0$. Therefore

$$
\begin{aligned}
\frac{d(C, A B)}{d(P, A B)} & =\frac{k a}{\sqrt{h^{2}+k^{2}}} / \frac{(k u-h v)}{\sqrt{h^{2}+k^{2}}} \\
& =\frac{k a}{k u-h v}
\end{aligned}
$$

From the equality of these ratios, we get

$$
\frac{k}{v}=\frac{-k a}{k u-(h-a) v-k a}=\frac{k a}{k u-h v}
$$

The equality of the first and third ratios gives $k u-(h+a) v=0$. Similarly the equality of second and third ratios gives $2 k u-(2 h-a) v=k a$. Solving for u and v, we get

$$
u=\frac{h+a}{3}, \quad v=\frac{k}{3} .
$$

Thus P is the centroid of the triangle and each of the ratios is equal to $\frac{k}{v}=3$.
6. Find all real numbers a for which the equation

$$
x^{2}+(a-2) x+1=3|x|
$$

has exactly three distinct real solutions in x.
Solution: If $x \geq 0$, then the given equation assumes the form,

$$
\begin{equation*}
x^{2}+(a-5) x+1=0 \tag{1}
\end{equation*}
$$

If $x<0$, then it takes the form

$$
\begin{equation*}
x^{2}+(a+1) x+1=0 \tag{2}
\end{equation*}
$$

For these two equations to have exactly three distinct real solutions we should have
(I) either $(a-5)^{2}>4$ and $(a+1)^{2}=4$;
(II) or $(a-5)^{2}=4$ and $(a+1)^{2}>4$.

Case (I) From $(a+1)^{2}=4$, we have $a=1$ or -3 . But only $a=1$ satisfies $(a-5)^{2}>4$. Thus $a=1$. Also when $a=1$, equation (1) has solutions $x=2+\sqrt{3}$; and (2) has solutions $x=-1,-1$. As $2 \pm \sqrt{3}>0$ and $-1<0$, we see that $a=1$ is indeed a solution.
Case (II) From $(a-5)^{2}=4$, we have $a=3$ or 7 . Both these values of a satisfy the inequality $(a+1)^{2}>4$. When $a=3$, equation (1) has solutions $x=1,1$ and (2) has the solutions $x=-2 \pm \sqrt{3}$. As $1>0$ and $-2 \pm \sqrt{3}<0$, we see that $a=3$ is in fact a solution.
When $a=7$, equation (1) has solutions $x=-1,-1$, which are negative contradicting $x \geq 0$.
Thus $a=1, a=3$ are the two desired values.
7. Consider the set $X=\{1,2,3, \ldots, 9,10\}$. Find two disjoint nonempty subsets A and B of X such that
(a) $A \cup B=X$;
(b) $\operatorname{prod}(A)$ is divisible by $\operatorname{prod}(B)$, where for any finite set of numbers $C, \operatorname{prod}(C)$ denotes the product of all numbers in C;
(c) the quotient $\operatorname{prod}(A) / \operatorname{prod}(B)$ is as small as possible.

Solution: The prime factors of the numbers in set $\{1,2,3, \ldots, 9,10\}$ are $2,3,5,7$. Also only $7 \in X$ has the prime factor 7 . Hence it cannot appear in B. For otherwise, 7 in the denominator would not get canceled. Thus $7 \in A$.
Hence

$$
\operatorname{prod}(A) / \operatorname{prod}(B) \geq 7
$$

The numbers having prime factor 3 are $3,6,9$. So 3 and 6 should belong to one of A and B, and 9 belongs to the other. We may take $3,6 \in A, 9 \in B$.
Also 5 divides 5 and 10 . We take $5 \in A, 10 \in B$. Finally we take $1,2,4 \in A, 8 \in B$. Thus

$$
A=\{1,2,3,4,5,6,7\}, \quad B=\{8,9,10\}
$$

so that

$$
\frac{\operatorname{prod}(A)}{\operatorname{prod}(B)}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{8 \cdot 9 \cdot 10}=7
$$

Thus 7 is the minimum value of $\frac{\operatorname{prod}(A)}{\operatorname{prod}(B)}$. There are other possibilities for A and B : e.g., 1 may belong to either A or B. We may take $A=\{3,5,6,7,8\}, B=$ $\{1,2,4,9,10\}$.

