Regional Mathematical Olympiad-2009

Problems and Solutions

1. Let $A B C$ be a triangle in which $A B=A C$ and let I be its in-centre. Suppose $B C=A B+A I$. Find $\angle B A C$.

Solution:

We observe that $\angle A I B=90^{\circ}+(C / 2)$. Extend $C A$ to D such that $A D=A I$. Then $C D=C B$ by the hypothesis. Hence $\angle C D B=\angle C B D=90^{\circ}-(C / 2)$. Thus

$$
\angle A I B+\angle A D B=90^{\circ}+(C / 2)+90^{\circ}-(C / 2)=180^{\circ} .
$$

Hence $A D B I$ is a cyclic quadrilateral. This implies that

$$
\angle A D I=\angle A B I=\frac{B}{2} .
$$

But $A D I$ is isosceles, since $A D=A I$. This gives

$$
\angle D A I=180^{\circ}-2(\angle A D I)=180^{\circ}-B .
$$

Thus $\angle C A I=B$ and this gives $A=2 B$. Since $C=B$, we obtain $4 B=180^{\circ}$ and hence $B=45^{\circ}$. We thus get $A=2 B=90^{\circ}$.
2. Show that there is no integer a such that $a^{2}-3 a-19$ is divisible by 289 .

Solution: We write

$$
a^{2}-3 a-19=a^{2}-3 a-70+51=(a-10)(a+7)+51 .
$$

Suppose 289 divides $a^{2}-3 a-19$ for some integer a. Then 17 divides it and hence 17 divides $(a-10)(a+7)$. Since 17 is a prime, it must divide $(a-10)$ or $(a+7)$. But $(a+7)-(a-10)=17$. Hence whenever 17 divides one of $(a-10)$ and $(a+7)$, it must divide the other also. Thus $17^{2}=289$ divides $(a-10)(a+7)$. It follows that 289 divides 51 , which is impossible. Thus, there is no integer a for which 289 divides $a^{2}-3 a-19$.
3. Show that $3^{2008}+4^{2009}$ can be wriiten as product of two positive integers each of which is larger than 2009^{182}.
Solution: We use the standard factorisation:

$$
x^{4}+4 y^{4}=\left(x^{2}+2 x y+2 y^{2}\right)\left(x^{2}-2 x y+2 y^{2}\right) .
$$

We observe that for any integers x, y,

$$
x^{2}+2 x y+2 y^{2}=(x+y)^{2}+y^{2} \geq y^{2}
$$

and

$$
x^{2}-2 x y+2 y^{2}=(x-y)^{2}+y^{2} \geq y^{2} .
$$

We write

$$
3^{2008}+4^{2009}=3^{2008}+4\left(4^{2008}\right)=\left(3^{502}\right)^{4}+4\left(4^{502}\right)^{4}
$$

Taking $x=3^{502}$ and $y=4^{502}$, we se that $3^{2008}+4^{2009}=a b$, where

$$
a \geq\left(4^{502}\right)^{2}, \quad b \geq\left(4^{502}\right)^{2}
$$

But we have

$$
\left(4^{502}\right)^{2}=2^{2008}>2^{2002}=\left(2^{11}\right)^{182}>(2009)^{182}
$$

since $2^{11}=2048>2009$.
4. Find the sum of all 3-digit natural numbers which contain at least one odd digit and at least one even digit.
Solution: Let X denote the set of all 3-digit natural numbers; let O be those numbers in X having only odd digits; and E be those numbers in X having only even digits. Then $X \backslash(O \cup E)$ is the set of all 3-digit natural numbers having at least one odd digit and at least one even digit.The desired sum is therefore

$$
\sum_{x \in X} x-\sum_{y \in O} y-\sum_{z \in E} z .
$$

It is easy to compute the first sum;

$$
\begin{aligned}
\sum_{x \in X} x & =\sum_{j=1}^{999} j-\sum_{k=1}^{99} k \\
& =\frac{999 \times 1000}{2}-\frac{99 \times 100}{2} \\
& =50 \times 9891=494550 .
\end{aligned}
$$

Consider the set O. Each number in O has its digits from the set $\{1,3,5,7,9\}$. Suppose the digit in unit's place is 1 . We can fill the digit in ten's place in 5 ways and the digit in hundred's place in 5 ways. Thus there are 25 numbers in the set O each of which has 1 in its unit's place. Similarly, there are 25 numbers whose digit in unit's place is $3 ; 25$ having its digit in unit's place as $5 ; 25$ with 7 and 25 with 9 . Thus the sum of the digits in unit's place of all the numbers in O is

$$
25(1+3+5+7+9)=25 \times 25=625
$$

A similar argument shows that the sum of digits in ten's place of all the numbers in O is 625 and that in hundred's place is also 625 . Thus the sum of all the numbers in O is

$$
625\left(10^{2}+10+1\right)=625 \times 111=69375 .
$$

Consider the set E. The digits of numbers in E are from the set $\{0,2,4,6,8\}$, but the digit in hundred's place is never 0 . Suppose the digit in unit's place is 0 . There are $4 \times 5=20$ such numbers. Similarly, 20 numbers each having digits $2,4,6,8$ in their unit's place. Thus the sum of the digits in unit's place of all the numbers in E is

$$
20(0+2+4+6+8)=20 \times 20=400
$$

A similar reasoning shows that the sum of the digits in ten's place of all the numbers in E is 400, but the sum of the digits in hundred's place of all the numbers in E is $25 \times 20=500$. Thus the sum of all the numbers in E is

$$
500 \times 10^{2}+400 \times 10+400=54400 .
$$

The required sum is

$$
494550-69375-54400=370775 .
$$

5. A convex polygon Γ is such that the distance between any two vertices of Γ does not exceed 1.
(i) Prove that the distance between any two points on the boundary of Γ does not exceed 1.
(ii) If X and Y are two distinct points inside Γ, prove that there exists a point Z on the boundary of Γ such that $X Z+Y Z \leq 1$.

Solution:

(i) Let S and T be two points on the boundary of Γ, with S lying on the side $A B$ and T lying on the side $P Q$ of Γ. (See Fig. 1.) Join $T A, T B, T S$. Now $S T$ lies between $T A$ and $T B$ in triangle $T A B$. One of $\angle A S T$ and $\angle B S T$ is at least 90°, say $\angle A S T \geq 90^{\circ}$. Hence $A T \geq T S$. But $A T$ lies inside triangle $A P Q$ and one of $\angle A T P$ and $\angle A T Q$ is at least 90°, say $\angle A T P \geq 90^{\circ}$. Then $A P \geq A T$. Thus we get $T S \leq A T \leq A P \leq 1$.

Fig. 1

Fig. 2
(ii) Let X and Y be points in the interior Γ. Join $X Y$ and produce them on either side to meet the sides $C D$ and $E F$ of Γ at Z_{1} and Z_{2} respectively. WE have

$$
\begin{aligned}
\left(X Z_{1}+Y Z_{1}\right)+\left(X Z_{2}+Y Z_{2}\right) & =\left(X Z_{1}+X Z_{2}\right)+\left(Y Z_{1}+Y Z_{2}\right) \\
& =2 Z_{1} Z_{2} \leq 2,
\end{aligned}
$$

by the first part. Therefore one of the sums $X Z_{1}+Y Z_{1}$ and $X Z_{2}+Y Z_{2}$ is at most 1 . We may choose Z accordingly as Z_{1} or Z_{2}.
6. In a book with page numbers from 1 to 100 , some pages are torn off. The sum of the numbers on the remaining pages is 4949. How many pages are torn off?
Solution: Suppose r pages of the book are torn off. Note that the page numbers on both the sides of a page are of the form $2 k-1$ and $2 k$, and their sum is $4 k-1$. The sum of the numbers on the torn pages must be of the form

$$
4 k_{1}-1+4 k_{2}-1+\cdots+4 k_{r}-1=4\left(k_{1}+k_{2}+\cdots+k_{r}\right)-r .
$$

The sum of the numbers of all the pages in the untorn book is

$$
1+2+3+\cdots+100=5050 .
$$

Hence the sum of the numbers on the torn pages is

$$
5050-4949=101
$$

We therefore have

$$
4\left(k_{1}+k_{2}+\cdots+k_{r}\right)-r=101 .
$$

This shows that $r \equiv 3(\bmod 4)$. Thus $r=4 l+3$ for some $l \geq 0$.
Suppose $r \geq 7$, and suppose $k_{1}<k_{2}<k_{3}<\cdots<k_{r}$. Then we see that

$$
\begin{aligned}
4\left(k_{1}+k_{2}+\cdots+k_{r}\right)-r & \geq 4\left(k_{1}+k_{2}+\cdots+k_{7}\right)-7 \\
& \geq 4(1+2+\cdots+7)-7 \\
& =4 \times 28-7=105>101
\end{aligned}
$$

Hence $r=3$. This leads to $k_{1}+k_{2}+k_{3}=26$ and one can choose distinct positive integers k_{1}, k_{2}, k_{3} in several ways.

