1. Let $A B C$ be an acute angled triangle. The circle Γ with $B C$ as diameter intersects $A B$ and $A C$ again at P and Q, respectively. Determine $\angle B A C$ given that the orthocenter of triangle $A P Q$ lies on Γ.

Solution. Let K denote the orthocenter of triangle $A P Q$. Since triangles $A B C$ and $A Q P$ are similar it follows that K lies in the interior of triangle $A P Q$.
Note that $\angle K P A=\angle K Q A=90^{\circ}-\angle A$. Since $B P K Q$ is a cyclic quadrilateral it follows that $\angle B Q K=180^{\circ}-\angle B P K=90^{\circ}-\angle A$, while on the other hand $\angle B Q K=\angle B Q A-\angle K Q A=$ $\angle A$ since $B Q$ is perpendicular to $A C$. This shows that $90^{\circ}-\angle A=\angle A$, so $\angle A=45^{\circ}$.
2. Let $f(x)=x^{3}+a x^{2}+b x+c$ and $g(x)=x^{3}+b x^{2}+c x+a$, where a, b, c are integers with $c \neq 0$. Suppose that the following conditions hold:
(a) $f(1)=0$;
(b) the roots of $g(x)$ are squares of the roots of $f(x)$.

Find the value of $a^{2013}+b^{2013}+c^{2013}$.

Solution. Note that $g(1)=f(1)=0$, so 1 is a root of both $f(x)$ and $g(x)$. Let p and q be the other two roots of $f(x)$, so p^{2} and q^{2} are the other two roots of $g(x)$. We then get $p q=-c$ and $p^{2} q^{2}=-a$, so $a=-c^{2}$. Also, $(-a)^{2}=(p+q+1)^{2}=p^{2}+q^{2}+1+2(p q+p+q)=-b+2 b=b$. Therefore $b=c^{4}$. Since $f(1)=0$ we therefore get $1+c-c^{2}+c^{4}=0$. Factorising, we get $(c+1)\left(c^{3}-c^{2}+1\right)=0$. Note that $c^{3}-c^{2}+1=0$ has no integer root and hence $c=-1, b=1, a=-1$. Therefore $a^{2013}+b^{2013}+c^{2013}=-1$.
3. Find all primes p and q such that p divides $q^{2}-4$ and q divides $p^{2}-1$.

Solution. Suppose that $p \leq q$. Since q divides $(p-1)(p+1)$ and $q>p-1$ it follows that q divides $p+1$ and hence $q=p+1$. Therefore $p=2$ and $q=3$.
On the other hand, if $p>q$ then p divides $(q-2)(q+2)$ implies that p divides $q+2$ or $q-2=0$. This gives either $p=q+2$ or $q=2$. In the former case it follows that that q divides $(q+2)^{2}-1$, so q divides 3 . This gives the solutions $p>2, q=2$ and $(p, q)=(5,3)$.
4. Find the number of 10 -tuples $\left(a_{1}, a_{2}, \ldots, a_{10}\right)$ of integers such that $\left|a_{1}\right| \leq 1$ and

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\cdots+a_{10}^{2}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{4}-\cdots-a_{9} a_{10}-a_{10} a_{1}=2
$$

Solution. Let $a_{11}=a_{1}$. Multiplying the given equation by 2 we get

$$
\left(a_{1}-a_{2}\right)^{2}+\left(a_{2}-a_{3}\right)^{2}+\cdots\left(a_{10}-a_{1}\right)^{2}=4
$$

Note that if $a_{i}-a_{i+1}= \pm 2$ for some $i=1, \ldots, 10$, then $a_{j}-a_{j+1}=0$ for all $j \neq i$ which contradicts the equality $\sum_{i=1}^{10}\left(a_{i}-a_{i+1}\right)=0$. Therefore $a_{i}-a_{i+1}=1$ for exactly two values of i in $\{1,2, \ldots, 10\}, a_{i}-a_{i+1}=-1$ for two other values of i and $a_{i}-a_{i+1}=0$ for all other values of i. There are $\binom{10}{2} \times\binom{ 8}{2}=45 \times 28$ possible ways of choosing these values. Note that $a_{1}=-1,0$ or 1 , so in total there are $3 \times 45 \times 28$ possible integer solutions to the given equation.
5. Let $A B C$ be a triangle with $\angle A=90^{\circ}$ and $A B=A C$. Let D and E be points on the segment $B C$ such that $B D: D E: E C=3: 5: 4$. Prove that $\angle D A E=45^{\circ}$.

Solution. Rotating the configuraiton about A by 90°, the point B goes to the point C. Let P denote the image of the point D under this rotation. Then $C P=B D$ and $\angle A C P=$ $\angle A B C=45^{\circ}$, so $E C P$ is a right-angled triangle with $C E: C P=4: 3$. Hence $P E=E D$. It follows that $A D E P$ is a kite with $A P=A D$ and $P E=E D$. Therefore $A E$ is the angular bisector of $\angle P A D$. This implies that $\angle D A E=\angle P A D / 2=45^{\circ}$.
6. Suppose that m and n are integers such that both the quadratic equations $x^{2}+m x-n=0$ and $x^{2}-m x+n=0$ have integer roots. Prove that n is divisible by 6 .

Solution. Let a be an integer. If a is not divisible by 3 then $a^{2} \equiv 1(\bmod 3)$, i.e., 3 divides $a^{2}-1$, and if a is odd then $a^{2} \equiv 1(\bmod 8)$, i.e., 8 divides $a^{2}-1$.

Note that the discriminants of the two quadratic polynomials are both squares of integers. Let a and b be integers such that $m^{2}-4 n=a^{2}$ and $m^{2}+4 n=b^{2}$. Therefore $8 n=b^{2}-a^{2}$ and $2 m^{2}=a^{2}+b^{2}$. If 3 divides m then 3 divides both a and b, so 3 divides n. On the other hand if 3 does not divide m then 3 does not divide a or b. Therefore 3 divides $b^{2}-a^{2}$ and hence 3 divides n.

If m is odd, then so is a, and therefore $4 n=m^{2}-a^{2}$ is divisible by 8 , so n is even. On the other hand, if m is even then both a and b are even. Further $(m / 2)^{2}-n=(a / 2)^{2}$ and $(m / 2)^{2}+n=(b / 2)^{2}$, so $(b-a) / 2$ is even. In particular, $n=\left(b^{2}-a^{2}\right) / 4$ is even.

