## Problems and Solutions: CRMO-2012, Paper 2

1. Let $A B C D$ be a unit square. Draw a quadrant of a circle with $A$ as centre and $B, D$ as end points of the arc. Similarly, draw a quadrant of a circle with $B$ as centre and $A, C$ as end points of the arc. Inscribe a circle $\Gamma$ touching the arc $A C$ internally, the arc $B D$ internally and also touching the side $A B$. Find the radius of the circle $\Gamma$.


Solution: Let $O$ be the centre of $\Gamma$. By symmetry $O$ is on the perpendicular bisector of $A B$. Draw $O E \perp A B$. Then $B E=A B / 2=1 / 2$. If $r$ is the radius of $\Gamma$, we see that $O B=1-r$, and $O E=r$. Using Pythagoras' theorem

$$
(1-r)^{2}=r^{2}+\left(\frac{1}{2}\right)^{2} .
$$

Simplification gives $r=3 / 8$.
2. Let $a, b, c$ be positive integers such that $a$ divides $b^{4}, b$ divides $c^{4}$ and $c$ divides $a^{4}$. Prove that $a b c$ divides $(a+b+c)^{21}$.
Solution: If a prime $p$ divides $a$, then $p \mid b^{4}$ and hence $p \mid b$. This implies that $p \mid c^{4}$ and hence $p \mid c$. Thus every prime dividing $a$ also divides $b$ and $c$. By symmetry, this is true for $b$ and $c$ as well. We conclude that $a, b, c$ have the same set of prime divisors.
Let $p^{x}\left\|a, p^{y}\right\| b$ and $p^{z} \| c$. (Here we write $p^{x} \| a$ to mean $p^{x} \mid a$ and $p^{x+1} \vee a$.) We may assume $\min \{x, y, z\}=x$. Now $b \mid c^{4}$ implies that $y \leq 4 z ; c \mid a^{4}$ implies that $z \leq 4 x$. We obtain

$$
y \leq 4 z \leq 16 x
$$

Thus $x+y+z \leq x+4 x+16 x=21 x$. Hence the maximum power of $p$ that divides $a b c$ is $x+y+z \leq 21 x$. Since $x$ is the minimum among $x, y, z, p^{x}$ divides $a, b, c$. Hence $p^{x}$ divides $a+b+c$. This implies that $p^{21 x}$ divides $(a+b+c)^{21}$. Since $x+y+z \leq 21 x$, it follows that $p^{x+y+z}$ divides $(a+b+c)^{21}$. This is true of any prime $p$ dividing $a, b, c$. Hence $a b c$ divides $(a+b+c)^{21}$.
3. Let $a$ and $b$ be positive real numbers such that $a+b=1$. Prove that

$$
a^{a} b^{b}+a^{b} b^{a} \leq 1
$$

Solution: Observe

$$
1=a+b=a^{a+b} b^{a+b}=a^{a} b^{b}+b^{a} b^{b}
$$

Hence

$$
1-a^{a} b^{b}-a^{b} b^{a}=a^{a} b^{b}+b^{a} b^{b}-a^{a} b^{b}-a^{b} b^{a}=\left(a^{a}-b^{a}\right)\left(a^{b}-b^{b}\right)
$$

Now if $a \leq b$, then $a^{a} \leq b^{a}$ and $a^{b} \leq b^{b}$. If $a \geq b$, then $a^{a} \geq b^{a}$ and $a^{b} \geq b^{b}$. Hence the product is nonnegative for all positive $a$ and $b$. It follows that

$$
a^{a} b^{b}+a^{b} b^{a} \leq 1 .
$$

4. Let $X=\{1,2,3, \ldots, 12\}$. Find the the number of pairs $\{A, B\}$ such that $A \subseteq X$, $B \subseteq X, A \neq B$ and $A \cap B=\{2,3,5,7,8\}$.

Solution: Let $A \cup B=Y, B \backslash A=M, A \backslash B=N$ and $X \backslash Y=L$. Then $X$ is the disjoint union of $M, N, L$ and $A \cap B$. Now $A \cap B=\{2,3,5,7,8\}$ is fixed. The remaining seven elements $1,4,6,9,10,11,12$ can be distributed in any of the remaining sets $M, N, L$.

This can be done in $3^{7}$ ways. Of these if all the elements are in the set $L$, then $A=B=\{2,3,5,7,8\}$ and this case has to be omitted. Hence the total number of pairs $\{A, B\}$ such that $A \subseteq X, B \subseteq X, A \neq B$ and $A \cap B=\{2,3,5,7,8\}$ is $3^{7}-1$.
5. Let $A B C$ be a triangle. Let $D, E$ be a points on the segment $B C$ such that $B D=$ $D E=E C$. Let $F$ be the mid-point of $A C$. Let $B F$ intersect $A D$ in $P$ and $A E$ in $Q$ respectively. Determine $B P / P Q$.


Solution: Let $D$ be the mid-point of $B E$. Join $A D$ and let it intersect $B F$ in $P$. Extend $C Q$ and $E P$ to meet $A B$ in $S$ and $T$ respectively. Now

$$
\begin{aligned}
\frac{B S}{S A}=\frac{[B Q C]}{[A Q C]}= & \frac{[B Q C] /[A Q B]}{[A Q C] /[A Q B]} \\
& =\frac{C F / F A}{E C / B E}=\frac{1}{1 / 2}=2 .
\end{aligned}
$$

Similarly,

$$
\frac{A Q}{Q E}=\frac{[A B Q]}{[E B Q]}=\frac{[A C Q]}{[E C Q]}=\frac{[A B Q]+[A C Q]}{[B C Q]}=\frac{[A B Q]}{[B C Q]}+\frac{[A C Q]}{[B C Q]}=\frac{A F}{F C}+\frac{A S}{S B}=1+\frac{1}{2}=\frac{3}{2}
$$

And

$$
\frac{A T}{T B}=\frac{[A P E]}{[B P E]}=\frac{[A P E]}{[A P B]} \cdot \frac{[A P B]}{[B P E]}=\frac{D E}{D B} \cdot \frac{A Q}{Q E}=1 \cdot \frac{3}{2}=\frac{3}{2}
$$

Finally,

$$
\frac{B P}{P Q}=\frac{[B P E]}{[Q P E]}=\frac{[B P A]}{[A P E]}=\frac{[B P E]+[B P A]}{[A P E]}=\frac{[B P E]}{[A P E]}+\frac{[B P A]}{[A P E]}=\frac{B T}{T A}+\frac{B D}{D E}=\frac{2}{3}+1=\frac{5}{3} .
$$

(Note: $B S / S A, A T / T B$ can also be obtained using Ceva's theorem. A solution can also be obtained using coordinate geometry.)
6. Show that for all real numbers $x, y, z$ such that $x+y+z=0$ and $x y+y z+z x=-3$, the expression $x^{3} y+y^{3} z+z^{3} x$ is a constant.
Solution: Consider the equation whose roots are $x, y, z$ :

$$
(t-x)(t-y)(t-z)=0
$$

This gives $t^{3}-3 t-\lambda=0$, where $\lambda=x y z$. Since $x, y, z$ are roots of this equation, we have

$$
x^{3}-3 x-\lambda=0, y^{3}-3 y-\lambda=0, z^{3}-3 z-\lambda=0 .
$$

Multiplying the first by $y$, the second by $z$ and the third by $x$, we obtain

$$
\begin{aligned}
& x^{3} y-3 x y-\lambda y=0, \\
& y^{3} z-3 y z-\lambda z=0, \\
& z^{3} x-3 z x-\lambda x=0 .
\end{aligned}
$$

Adding we obtain

$$
x^{3} y+y^{3} z+z^{3} x-3(x y+y z+z x)-\lambda(x+y+z)=0 .
$$

This simplifies to

$$
x^{3} y+y^{3} z+z^{3} x=-9 .
$$

(Here one may also solve for $y$ and $z$ in terms of $x$ and substitute these values in $x^{3} y+y^{3} z+z^{3} x$ to get -9 .)

