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1. Find the number of eight-digit numbers the sum of whose digits is 4.

Solution. We need to find the number of 8-tuples (a1, a2, . . . , a8) of non-negative integers
such that a1 ≥ 1 and a1 +a2 + · · ·+a8 = 4. If a1 = 1, then there are three possibilities: either
exactly three among a2, a3, . . . , a7 equal 1 and the rest equal zero, or five of them are zero
and the other two equal 1 and 2, or six of them are zero and the other equals 3. In the first
case, there are

(
7
3

)
= 35 such 8-tuples, in the second case there are

(
7
2

)
× 2 = 42 such 8-tuples

and in the third case there are 7 such 8-tuples. If a1 = 2 then either six of a2, a3, . . . , a7 are
zero and the other equals two, or five of them are zero and the remaining two both equal 1.
In the former case, there are 7 such 8-tuples and in the latter case there are

(
7
2

)
= 21 such

8-tuples. If a1 = 3 then exactly six of a2, a3, . . . , a7 are zero and the other equals one. There
are 7 such 8-tuples. Finally, there is one 8-tuple in which a1 = 4. Thus, in total, there are
120 such 8-tuples.

2. Find all 4-tuples (a, b, c, d) of natural numbers with a ≤ b ≤ c and a! + b! + c! = 3d.

Solution. Note that if a > 1 then the left-hand side is even, and therefore a = 1. If b > 2
then 3 divides b!+ c! and hence 3 does not divide the left-hand side. Therefore b = 1 or b = 2.

If b = 1 then c! + 2 = 3d, so c < 2 and hence d = 1. If b = 2 then c! = 3d − 3. Note that
d = 1 does not give any solution. If d > 1 then 9 does not divide c!, so c < 6. By checking
the values for c = 2, 3, 4, 5 we see that c = 3 and c = 4 are the only two solutions. Thus
(a, b, c, d) = (1, 1, 1, 1), (1, 2, 3, 2) or (1, 2, 4, 3).

3. In an acute-angled triangle ABC with AB < AC, the circle Γ touches AB at B and passes
through C intersecting AC again at D. Prove that the orthocentre of triangle ABD lies on
Γ if and only if it lies on the perpendicular bisector of BC.

Solution. Note that ∠ADB = ∠B and hence triangles ADB and ABC are similar. In
particular, ABD is an acute-angled triangle. Let H denote the orthocenter of triangle ABD.
Then ∠BHD = 180◦ − ∠A.

Suppose that H lies on Γ. Since AB < AC the point D lies on the segment AC and
∠C = 180◦ − ∠BHD = ∠A. Therefore BH is the perpendicular bisector of AC. Hence
∠HBC = ∠ABC = ∠HCB, so H lies on the perpendicular bisector of BC.

Conversely, suppose that H lies on the perpendicular bisector of BC. Then ∠HCB =
∠HBC = 90◦ − ∠C. Since ∠ABD = ∠C it follows that ∠HDB = 90◦ − ∠C. Since
∠HCB = ∠HDB we have that H lies on Γ.

4. A polynomial is called a Fermat polynomial if it can be written as the sum of the squares
of two polynomials with integer coefficients. Suppose that f(x) is a Fermat polynomial such
that f(0) = 1000. Prove that f(x) + 2x is not a Fermat polynomial.

Solution. Let p(x) be a Fermat polynomial such that p(0) is divisible by 4. Suppose that
p(x) = g(x)2+h(x)2 where g(x) and h(x) are polynomials with integer coefficients. Therefore
g(0)2 + h(0)2 is divisble by 4. Since g(0) and h(0) are integers, their squares are either
1 (mod 4) or 0 (mod 4). It therefore follows that g(0) and h(0) are even. Therefore the
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coefficents of x in g(x)2 and in h(x)2 are both divisible by 4. In particular, the coefficient of
x in a Fermat polynomial p(x), with p(0) divisible by 4, is divisible by 4. Thus if f(x) is a
Fermat polynomial with f(0) = 1000 then f(x) + 2x cannot be a Fermat polynomial.

5. Let ABC be a triangle which it not right-angled. Define a sequence of triangles AiBiCi,
with i ≥ 0, as follows: A0B0C0 is the triangle ABC; and, for i ≥ 0, Ai+1, Bi+1, Ci+1 are the
reflections of the orthocentre of triangle AiBiCi in the sides BiCi, CiAi, AiBi, respectively.
Assume that ∠Am = ∠An for some distinct natural numbers m,n. Prove that ∠A = 60◦.

Solution. The statement of the problem as stated is not correct. We give below the reason,
and we shall also give the condition under which the statement becomes true.

Let P,Q,R denote the reflections of H with respect BC,CA,AB, respectively. Then P,Q,R
lie on the circumcircle of the triangle. If ABC is an acute-angled triangle then ∠QPR =
∠QPA + ∠RPA = ∠QCA + ∠RBA = 180◦ − 2∠A. Similarly, if ∠A is obtuse then we get
∠QPR = 2∠A− 180◦. Therefore, for example, if ∠A = 180◦/7 and ∠B∠C = 540◦/7 then we
get that ∠A3 = 180◦/7 = ∠A0. Therefore the statement of the problem is not correct.

However, the statement is correct provided all the triangles AiBiCi are acute-angled. Under
this assumption we give below a proof of the statement.

Let α, β, γ denote the angles of T0. Let fk(x) = (−2)kx− ((−2)k − 1)60◦. We claim that the
angles of Tk are fk(α), fk(β) and fk(γ). Note that this claim is true for k = 0 and k = 1. It
is easy to check that fk+1(x) = 180◦ − 2fk(x), so the claim follows by induction.

If Tm = Tn, then fm(α) = fn(α), so α((−2)m − (−2)n) = 60◦((−2)m − (−2)n). Therefore,
since m 6= n, it follows that α = 60◦.

6. Let n ≥ 4 be a natural number. Let A1A2 · · ·An be a regular polygon and X = {1, 2, . . . , n}.
A subset {i1, i2, . . . , ik} of X, with k ≥ 3 and i1 < i2 < · · · < ik, is called a good subset
if the angles of the polygon Ai1Ai2 · · ·Aik , when arranged in the increasing order, are in an
arithmetic progression. If n is a prime, show that a proper good subset of X contains exactly
four elements.

Solution. We note that every angle of Ai1Ai2 · · ·Aik is a multiple of π/n. Suppose that these
angles are in an arithmetic progression. Let r and s be non-negative integers such that πr/n
is the smallest angle in this progression and πs/n is the common difference. Then we have

π

n
(rk + sk(k − 1)/2) = (k − 2)π .

Therefore rk + sk(k − 1)/2 = (k − 2)n. Suppose that k is odd. Then k divides the left-hand
side and k is coprime to k − 2. Therefore k divides n. On the other hand if k is even then
k/2 is coprime to (k − 2)/2 and hence k divides 4n. If n is prime and k < n then it follows
that k divides 4. Since k > 2, we have proved that k = 4.

——— ? ? ? ———
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