1. Let $A B C$ be an isosceles triangle with $A B=A C$ and let Γ denote its circumcircle. A point D is on the $\operatorname{arc} A B$ of Γ not containing C and a point E is on the $\operatorname{arc} A C$ of Γ not containing B such that $A D=C E$. Prove that $B E$ is parallel to $A D$.

Solution. We note that triangle $A E C$ and triangle $B D A$ are congruent. Therefore $A E=$ $B D$ and hence $\angle A B E=\angle D A B$. This proves that $A D$ is parallel to $B E$.
2. Find all triples (p, q, r) of primes such that $p q=r+1$ and $2\left(p^{2}+q^{2}\right)=r^{2}+1$.

Solution. If p and q are both odd, then $r=p q-1$ is even so $r=2$. But in this case $p q \geq 3 \times 3=9$ and hence there are no solutions. This proves that either $p=2$ or $q=2$. If $p=2$ then we have $2 q=r+1$ and $8+2 q^{2}=r^{2}+1$. Multiplying the second equation by 2 we get $2 r^{2}+2=16+(2 q)^{2}=16+(r+1)^{2}$. Rearranging the terms, we have $r^{2}-2 r-15=0$, or equivalently $(r+3)(r-5)=0$. This proves that $r=5$ and hence $q=3$. Similarly, if $q=2$ then $r=5$ and $p=3$. Thus the only two solutions are $(p, q, r)=(2,3,5)$ and $(p, q, r)=(3,2,5)$.
3. A finite non-empty set S of integers is called 3 -good if the the sum of the elements of S is divisble by 3 . Find the number of 3 -good non-empty subsets of $\{0,1,2, \ldots, 9\}$.

Solution. Let A be a 3 -good subset of $\{0,1, \ldots, 9\}$. Let $A_{1}=A \cap\{0,3,6,9\}, A_{2}=A \cap\{1,4,7\}$ and $A_{3}=A \cap\{2,5,8\}$. Then there are three possibilities:

- $\left|A_{2}\right|=3,\left|A_{3}\right|=0$;
- $\left|A_{2}\right|=0,\left|A_{3}\right|=3$;
- $\left|A_{2}\right|=\left|A_{3}\right|$.

Note that there are 16 possibilities for A_{1}. Therefore the first two cases correspond to a total of 32 subsets that are 3-good. The number of subsets in the last case is $16\left(1^{2}+3^{2}+3^{2}+1^{2}\right)=320$. Note that this also includes the empty set. Therefore there are a total of 351 non-empty 3 good subsets of $\{0,1,2, \ldots, 9\}$.
4. In a triangle $A B C$, points D and E are on segments $B C$ and $A C$ such that $B D=3 D C$ and $A E=4 E C$. Point P is on line $E D$ such that D is the midpoint of segment $E P$. Lines $A P$ and $B C$ intersect at point S. Find the ratio $B S / S D$.

Solution. Let F denote the midpoint of the segment $A E$. Then it follows that $D F$ is parallel to $A P$. Therefore, in triangle $A S C$ we have $C D / S D=C F / F A=3 / 2$. But $D C=B D / 3=$ $(B S+S D) / 3$. Therefore $B S / S D=7 / 2$.
5. Let a_{1}, b_{1}, c_{1} be natural numbers. We define

$$
a_{2}=\operatorname{gcd}\left(b_{1}, c_{1}\right), \quad b_{2}=\operatorname{gcd}\left(c_{1}, a_{1}\right), \quad c_{2}=\operatorname{gcd}\left(a_{1}, b_{1}\right)
$$

and

$$
a_{3}=\operatorname{lcm}\left(b_{2}, c_{2}\right), \quad b_{3}=\operatorname{lcm}\left(c_{2}, a_{2}\right), \quad c_{3}=\operatorname{lcm}\left(a_{2}, b_{2}\right)
$$

Show that $\operatorname{gcd}\left(b_{3}, c_{3}\right)=a_{2}$.

Solution. For a prime p and a natural number n we shall denote by $v_{p}(n)$ the power of p dividing n. Then it is enough to show that $v_{p}\left(a_{2}\right)=v_{p}\left(\operatorname{gcd}\left(b_{3}, c_{3}\right)\right)$ for all primes p. Let p be a prime and let $\alpha=v_{p}\left(a_{1}\right), \beta=v_{p}\left(b_{1}\right)$ and $\gamma=v_{p}\left(c_{1}\right)$. Because of symmetry, we may assume that $\alpha \leq \beta \leq \gamma$. Therefore, $v_{p}\left(a_{2}\right)=\min \{\beta, \gamma\}=\beta$ and similarly $v_{p}\left(b_{2}\right)=v_{p}\left(c_{2}\right)=$ α. Therefore $v_{p}\left(b_{3}\right)=\max \{\alpha, \beta\}=\beta$ and similarly $v_{p}\left(c_{3}\right)=\max \{\alpha, \beta\}=\beta$. Therefore $v_{p}\left(g c d\left(b_{3}, c_{3}\right)\right)=v_{p}\left(a_{2}\right)=\beta$. This completes the solution.
6. Let a, b be real numbers and, let $P(x)=x^{3}+a x^{2}+b$ and $Q(x)=x^{3}+b x+a$. Suppose that the roots of the equation $P(x)=0$ are the reciprocals of the roots of the equation $Q(x)=0$. Find the greatest common divisor of $P(2013!+1)$ and $Q(2013!+1)$.

Solution. Note that $P(0) \neq 0$. Let $R(x)=x^{3} P(1 / x)=b x^{3}+a x+1$. Then the equations $Q(x)=0$ and $R(x)=0$ have the same roots. This implies that $R(x)=b Q(x)$ and equating the coefficients we get $a=b^{2}$ and $a b=1$. This implies that $b^{3}=1$, so $a=b=1$. Thus $P(x)=x^{3}+x^{2}+1$ and $Q(x)=x^{3}+x+1$. For any integer n we have
$(P(n), Q(n))=(P(n), P(n)-Q(n))=\left(n^{3}+n^{2}+1, n^{2}-n\right)=\left(n^{3}+n^{2}+1, n-1\right)=(3, n-1)$.
Thus $(P(n), Q(n))=3$ if $n-1$ is divisible by 3 . In particular, since 3 divides 2013 ! it follows that $(P(2013!+1), Q(2013!+1))=3$.

