

### Solution Paper II PHYSICS

**1.** (A) Let m1 and m2 be the masses of particles. By principle of conservation of momentum



askllTians

**2.** (B)

Frequency = 200 Hz Velocity = 50 m/sec.  $\therefore$  Wavelength =  $\frac{50}{200}$  = 0.25 m The equation for stationary wave.  $y = 2 A \cos \frac{2\pi x}{\lambda} \sin \frac{2\pi t}{T}$   $\therefore$  y = 10 cos 8 $\pi x \sin 400 \pi t$ and y = 5 sin 2 $\pi$  (200 t - 4x)

**3.** (A) Applying Newton's second law to the circular orbit.

we have  $\frac{mv^2}{r} = \frac{GMm}{r^2} But v = \frac{2\pi r}{T}$  $m\frac{4\pi^2 r^2}{rT^2} = \frac{GMm}{r^2} : T^2 = \frac{4\pi^2 r^3}{GM} : T = \frac{2\pi r^{3/2}}{\sqrt{GM}}$ But  $M = \frac{4}{3}\pi r^3\rho$  and  $r = r_p$  $\therefore T = \frac{2\pi r_p^{3/2}}{\sqrt{G} \cdot \frac{4}{3}\pi r_p^3\rho} = 2\pi\sqrt{\frac{3}{4\pi Gp}}$  $= \sqrt{\frac{3\pi}{G\rho}}$ 



**5.** (D) At t = 2 second, the position of both pulses are separately given by figure (a) and figure (b); the superposition of both pulses is given by figure (c).





**6.** (D) Before heating let the pressure of gas be P1, from the equilibrium piston, PA = kx1

$$\therefore x_{1} = \frac{PA}{K} = \left(\frac{nRT}{V}\right) \frac{A}{K} = \frac{1 \times 8.3 \times 100 \times 10^{-2}}{0.83 \times 100}$$

$$= 10^{-1} = 0.1 \text{ m}$$
Since during heating process, The spring is compressed further by 0.1 m  

$$\therefore x_{2} = 0.2 \text{ m}$$
work done by gas =  $\frac{1}{2} \cdot 100 \left(0.2^{2} - 0.1^{2}\right)$ 

$$= \frac{1}{2} \cdot 100 (0.1) (0.3) = 1.50 = 1.5 \text{ J}$$
7. (B)  
M. I. about 'O' is  $\frac{MR^{2}}{2}$   
By parallel-axis theorem :  

$$\frac{MR^{2}}{2} = I_{cm} + M \left(\frac{4R}{3\pi} \cdot \sqrt{2}\right)^{2}$$

$$\Rightarrow I_{cm} = \frac{MR^{2}}{2} - M \left(\sqrt{2}\frac{4R}{3\pi}\right)^{2}$$
8. (A)  
S\_{1}P - S\_{2}P = 0

 $\therefore$  4 3 maximum lie on are between P & Q. Counting all quadrants; the total number is 12. P & Q symmetrical points are also maxima.

 $\therefore$  4 Total number is 16

 $S_1Q - S_2Q = 4\lambda$ 



askIITians



9. (A)  $\frac{Q}{A} = 0.06 \times \frac{30 - 25}{1.5} = 0.2 \text{ [From first slab]}$   $t_1 = 30^{\circ}\text{C}, t_2 = 25^{\circ}\text{C}, t_3, t_4, t_5 = -10^{\circ}\text{C} \text{ be temperatures at interfaces.}$   $\therefore \frac{Q}{A} = 0.2 = 0.1 \times \frac{t_4 + 10}{3.5} \Rightarrow t_4 = -3^{\circ}\text{C}$   $\therefore \frac{Q}{A} = 0.2 = 0.04 \times \frac{t_3 + 3}{2.8} \Rightarrow t_3 = 11^{\circ}\text{C}$ 

**10.** (A)  
From problem (9) :  
$$\frac{Q}{A} = 0.2 = K_2 \quad \frac{14}{1.4} \Rightarrow k_2 = 0.02$$

**11.** (C) For a wire of radius **R** carrying a current I, the magnetic field at distance r is given by :

$$\mathbf{B} = \begin{cases} \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{R}} \cdot \left(\frac{\mathbf{r}}{\mathbf{R}}\right) & 0 \le \mathbf{r} \le \mathbf{R} \\\\ \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{r}} & \mathbf{r} \ge \mathbf{R} \end{cases}$$



From condition (ii);  $R_a > R_b \& R_c > R_d$ From condition (i);  $R_c > R_a$ ∴ (C) has largest radius.

12. (A) a & c carry same current in graph but radius of 'a' is smaller than radius of c.

askllTians

 $\therefore$  Current density in 'a' is larger.

13. (B) **14.** (D) Soln. for Q. No. 13 & 14  $i_1 + i_2$  $i_1 + i_2 = \frac{E_2}{R_2}$ .....(1) i<sub>2</sub>  $E_2 = E_1 - i_1 R_1$  $\Rightarrow i_1 = \left(\frac{E_1 - E_2}{R_1}\right) \qquad \dots \dots \dots (2) \text{ [Negative slope]}$  $i_2 = \frac{E_2}{R_2} - i_1 = E_2 \left[ \frac{1}{R_2} + \frac{1}{R_2} \right] - \frac{E_1}{R_2}$  [Positive slope]  $i_1 = 0 \Rightarrow E_1 = E_2$  from Eq. (1) according to graph;  $i_1 = 0$  at  $E_2 = 6V \therefore E_1 = 6V$ Slope of  $i_1$  vs  $E_2$  graph =  $-\frac{1}{R_1} = -\frac{0.1}{2} \Rightarrow R_1 = 20 \Omega$ Slope of  $i_2 vs E_2$  graph =  $\frac{1}{R_1} + \frac{1}{R_2} = \frac{0.3}{4} = \frac{3}{40} \Rightarrow \frac{1}{R_2} = \frac{3}{40} - \frac{1}{R_1} = \frac{3}{40} - \frac{1}{20}$  $\Rightarrow R_2 = 40 \Omega$ 

**15.** (A), (C) We know the acceleration of particle executing S.H.M. =  $-\omega^2 x$ .



... Powered By IITians

Velocity 
$$v^2 = \omega^2 (a^2 - x^2)$$
  
 $\therefore u^2 = \omega^2 (a^2 - x_1^2)$   
 $v^2 = \omega^2 (a^2 - x_2^2)$   
 $\alpha = -\omega^2 x_1$   
 $\beta = -\omega^2 x_2$   
(1) - (2)  $u^2 - v^2 = \omega^2 (x_2^2 - x_1^2)$   
(3) + (4)  $\alpha + \beta = -\omega^2 (x_1 + x_2)$   
Dividing (5) by (6)  
 $\frac{u^2 - v^2}{\alpha + \beta} = -(x_2 - x_1)$  so  $d = \left| \frac{u^2 - v^2}{\alpha + \beta} \right|$ 

Hence when the accelerations are  $\propto$  and  $\beta$  the distance between the particles

$$= x_2 - x_1 = \frac{u^2 - v^2}{\alpha + \beta}$$
  
From (3) and (4) we get  
 $\beta - \alpha = \omega^2 (x_2 - x_1)$   
 $\omega^2 = \frac{\beta - \alpha}{(x_2 - x_1)}$   
 $T = \frac{2\pi}{\omega} = 2\pi / \sqrt{\frac{\beta - \alpha}{(x_2 - x_1)}} = 2\pi \sqrt{\frac{(x_2 - x_1)}{\beta - \alpha}}$   
But  $x_2 - x_1 = \frac{u^2 - v^2}{\alpha + \beta}$   
 $\therefore T = 2\pi \sqrt{\frac{u^2 - v^2}{(\alpha + \beta)(\beta - \alpha)}} = 2\pi \sqrt{\frac{u^2 - v^2}{\beta^2 - \alpha^2}}$ 

**16.** (A), (C), (D) For any curve slope of the tangent at the point  $= \frac{dy}{dx}$ Here slope  $\frac{ds}{dt}$  but  $\frac{ds}{dt}$  is the velocity at the point.

 $\therefore$  The velocity of particle at any point is given by the slope of the tangent at that point.

# askIITians

i) Between O and A the slope is positive. Hence velocity is positive. As we move from O to A the slope decreases. So the velocity decreases and hence acceleration is negative.

ii) Between A and B slope of tangent is zero at every point. Velocity and acceleration are both

zero.

iii) Between C and D the slope of tangent is negative but constant. The velocity is negative and

the acceleration is zero.

iv) Between D and E the slope of the tangent is positive and increasing. Hence velocity is

positive and increasing. The acceleration is positive.

**17.** (A), (C)

$$f \propto (T)^{1/2} \Rightarrow \frac{\Delta f}{f} = \frac{1}{2} \frac{\Delta T}{T}$$
  

$$\therefore \frac{15Hz}{f} = \frac{1}{2} \times \frac{21}{100} \Rightarrow f = \frac{30 \times 100}{21} \Rightarrow f = \frac{1000}{7} Hz$$
  

$$\therefore f = 143 Hz$$
  
and  $v \propto \sqrt{T}$  So  $\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta T}{T} = \frac{21}{2} = 10.5\%$ 

**18.** (A), (C) For Q1; observer stationary, source is moving;

$$f_1 = \frac{V}{V = \frac{V}{5}} \cdot f = \frac{5f}{4} \quad \therefore \lambda_1 = \frac{V}{f_1} = \frac{4V}{5f}$$

Frequency passed in water is  $\frac{5f}{4}$ , now for observer O<sub>2</sub>

$$\therefore f_2 = \frac{4V + \frac{V}{5}}{4V} \cdot \frac{5f}{4} = \frac{21f}{16}$$
$$\lambda_2 = \frac{4V}{f_2} = \frac{4V}{21f} \times 16$$



#### **19.** (A), (B), (C)

#### 20. (B), (C) Friction on plate due to ground

 $f_{1} = 7.5 \times 0.2 \times 10 = 15$   $25 - 15 - f_{2} = 1.5 a_{1}$   $f_{2} = 6a_{2}$   $10 = 1.5 a_{1} + 6a_{2}$   $10 = 1.5 a_{1} + 6a_{2}$   $10 = 1.5 a_{1} + 6a_{2}$   $2 + r\alpha = a_{1} \implies a_{1} - a_{2} = a_{2}$   $a_{2} + r\alpha = a_{1} \implies a_{1} - a_{2} = a_{2}$   $a_{2} = a_{1} - a_{2} \implies a_{1} = 2a_{2}$   $10 - 3a_{1} = 1.5 a_{1}$   $\Rightarrow a_{1} = \frac{100}{45} = \frac{20}{9}$   $a_{2} = \frac{a_{1}}{2} = \frac{20}{18}$   $v_{1} = a_{1}t = \frac{20}{9} \times \frac{3}{4} = \frac{5}{3}$  (Plate)  $v_{2} = a_{2}t = \frac{20}{18} \times \frac{3}{4} = \frac{5}{6}$  (ring)

**21.** (B)  $dsp^2hybridisation$  gives square planar structure with s,  $p_x$ ,  $p_y$  and  $dx^2-y^2$  orbitals involved forming angles of 90°.

22. (B)

askIITians

$$P \times V = \frac{4}{M} \times R \times T$$
 Case I  

$$P \times V = \frac{4 - 0.8}{M} \times R \times (T + 50)$$
 Case II  

$$\therefore \frac{4}{3.2} \times \frac{T}{(T + 50)} = 1 \text{ or } 4T = 3.2 \text{ T} + 160$$
  

$$\therefore 0.8 \text{ T} = 160$$
  
or  $T = \frac{160}{0.8} = 200 \text{ K}$ 

**23.** (B) As conversion of X to AB is fast, it means the process has a very low activation energy.

24. (B)

**25.** (C)

Number of atoms in 1 g  $_{92}^{235}$  U =  $\frac{6.023 \times 10^{23}}{235}$ 

Energy obtained by fission of one atom =  $3.20 \times 10^{-11}$  J

 $\therefore$  Energy obtained by fission of  $\frac{6.023 \times 10^{23}}{235}$  atoms

$$=\frac{3.20\times10^{-11}\times6.023\times10^{23}}{235}=8.20\times10^{10}\,\mathrm{J}=8.20\times10^{7}\,\mathrm{kJ}$$





36. (A), (B), (C) Particle size in crystalloids are smaller than that in colloids, crystalloid particles passed through a membrane whereas colloidal particles do not. Crystalloids do not exhibit Tyndall effect whereas colloids exhibit Tyndall effect.
37. (A), (B), (D)

**38.** (A), (C)

**39.** (A), (C), (D) (A) For exothermic reaction  $\Delta H$  is -ve. As  $\Delta H = H_p - H_r$ For  $\Delta H$  to be -ve  $H > H_p$ 

(B) Enthalpy of combustion is always negative

(C) As  $\Delta G = \Delta H - T\Delta S$ for a reaction to be feasible at all temperatures  $\Delta G = -ve$  which is possible if  $\Delta H = -ve$  and  $\Delta S = +ve$ 

askIITians

 $(\mathbf{D})$  for the reaction

$$C_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)}$$
$$\Delta n = 1 - \frac{1}{2} = \frac{1}{2}$$
$$\therefore \quad \Delta H = \Delta E + \frac{1}{2}RT$$
$$\therefore \quad \Delta H > \Delta E$$

**40.** (A), (B) When the dispersion medium is gas, the colloidal system is called aerosol, smoke, dust are examples of aerosols of solids whereas fog, clouds are examples of aerosol of liquids.

#### MATHEMATICS

41. (C)  

$$\alpha - p > 0, \beta - p > 0 \text{ and } D \ge 0$$
  
 $\Rightarrow \alpha + \beta - 2p > 0, \alpha\beta - p(\alpha + \beta) + p^2 > 0 \text{ and } p^2 + 4p^2 \ge 0$   
 $\therefore p - 2p > 0, -p^2 - p \cdot p + p^2 > 0 \Rightarrow p < 0, p^2 < 0 \text{ (absurd)}.$ 

42. (D)  

$$a \sin\theta = b \cos\theta = \frac{2c \tan\theta}{1-\tan^2\theta} \quad \text{where, } \theta = x^2$$

$$\tan\theta = \frac{b}{a} \quad \text{and} \quad \frac{b}{\sec\theta} = \frac{2c \tan\theta}{1-\tan^2\theta}$$
Squaring both sides we get,  

$$b^2(1+\tan^4\theta - 2\tan^2\theta) = (4c^2\tan^2\theta)(1+\tan^2\theta)$$

$$b^2\left(1+\frac{b^4}{a^4} - 2\frac{b^2}{a^2}\right) = 4\frac{c^2b^2}{a^2} \cdot \left(1+\frac{b^2}{a^2}\right)$$

$$b^2\left(\frac{a^4+b^4-2a^2b^2}{a^4}\right) = \frac{4c^2b^2(a^2+b^2)}{a^4} \quad \text{or} \quad (a^2-b^2)^2 = 4c^2(a^2+b^2)$$



∴ The ∆ is isoceles.



TransWeb Educational Services Pvt. Ltd B – 147,1st Floor, Sec-6, NOIDA, UP-201301

Website:<u>www.askiitians.com</u> Email. <u>info@askiitians.com</u> <u>Tel:0120-4616500</u> Ext - 204 askIITians

... Powered By IITians

Now,  $\log_{e} e = 1$  and  $\frac{\pi}{2} < e$ ,  $\therefore \log \frac{\pi}{2} < \log e = 1$   $\therefore -\frac{\pi}{2} < \log \theta < 1 < \frac{\pi}{2}$   $\Rightarrow \log \theta$  lies in 1<sup>st</sup> and 4<sup>th</sup> quadrant  $\therefore \cos (\log \theta)$  is positive ......(1) Now,  $0 < \cos \theta < 1 \Rightarrow \log \cos \theta < \log 1 = 0$   $\Rightarrow \log \cos \theta$  is negative ......(2) From (1) and (2), we conclude  $\cos \log \theta > \log \cos \theta$ 

**48.** (B) Let the lines be y = c1 and y = c2 [: the lines are parallel to x 1 axis] From the equation of circle, x2+y2-6x-4y-12 = 0 centre (3, 2) and radius = 5

The perpendicular drawn from centre to the lines are CP and CP'

$$CP = \frac{2 - c_1}{\sqrt{1}} = \pm 5 \implies 2 - c_1 = \pm 5$$
  

$$\therefore c_1 = 7 \text{ and } c_1 = -3$$
  
Hence the lines are  $y - 7 = 0$  and  $y + 3 = 0$   

$$\therefore \text{ Pair of lines is } (y - 7) (y + 3) = 0, \text{ i.e., } y^2 - 4y - 21 = 0.$$

$$49. \text{ (D)}$$

$$\frac{(|x[+2)(|x[+4)| > 0)}{(|x[+6)| > 0| = -2)} = 0$$

$$49. (D)$$

$$\frac{(|x[+2)(|x[+4)| > 0)}{(|x[+6)| > 0| = -2)} = 0$$

$$3 - 6 < |x| < -4 \quad \text{or} \quad |x| > -2$$

$$\therefore |x| = -5, -1, 0, \quad |x| > -2$$

$$\therefore |x| = -5, -1, 5, 1, 0$$

$$50. (B)$$

$$-|x + \frac{1}{x}| = |x + \frac{1}{x}| \implies 2 |x + \frac{1}{x}| = 0$$
which is not possible, as  $|x + \frac{1}{x}| \ge 2$ 

$$51. (B) g(x) \equiv f(x) - x^3 + 1 = 0$$
 has at least 3 roots in [1, 4]

 $\Rightarrow$  f'(x) = 3x<sup>2</sup> has at least 1 root each in (1, 2) and (2, 4).



*Powered By IITians* 52. (C) f(x) - x retains it's sign, so consider f(x) - x > 0.

$$\begin{split} \Rightarrow f^{2}(x) - f(x) > 0 \\ f^{3}(x) - f^{2}(x) > 0 \\ \vdots \\ f^{n}(x) - f^{n-1}(x) > 0 \quad \Rightarrow f^{n}(x) - x > 0 \end{split}$$



53. (D)

$$P_{k} = \frac{1 - x^{k+1}}{1 - x}$$

$$P_{1} P_{2} P_{3} \dots P_{n} = \frac{(1 - x^{2})(1 - x^{3})(1 - x^{4}) \dots (1 - x^{n+1})}{(1 - x)^{n}}$$

No. of terms =  $1 + \max$ . power of x

$$= 1 + \frac{n(n+1)}{2} = \frac{n^2 + n + 2}{2}$$

54. (D)

$$(1+x)(1+x+x^2)...(1+x+....+x^n) = a_0 + a_1x + a_2x^2 + a_3x^3 + ....$$

Put, x = 1,  $2 \times 3 \times 4 \times \dots (n + 1) = a_0 + a_1 + a_2 + a_3 + \dots$ 

Put x = -1,

$$0 = a_0 - a_1 + a_2 - a_3 + \dots$$
  
(n+1)! = 2[a\_0 + a\_2 + \dots]  $\Rightarrow a_0 + a_2 + \dots = \frac{(n+1)!}{2}$ 

ask II Tians

55. (B),(C),(D)

 $(A) f(0) \rightarrow undefined$ 

$$f(0^{-}) = \lim_{h \to 0} \frac{1}{1 + 2^{-\cot h}} = 1$$
$$f(0^{+}) = \lim_{h \to 0} \frac{1}{1 + 2^{\cot h}} = 0$$

 $\Rightarrow$  non-removable discontinuity at x = 0.

 $(B)\,f\,(0) \to not \; defined$ 

$$f(0^{-}) = \lim_{h \to 0} \cos\left(\frac{\sinh h}{-h}\right) = \cos 1$$
$$f(0^{+}) = \lim_{h \to 0} \cos\left(\frac{\sinh h}{h}\right) = \cos 1$$

 $\Rightarrow$  removable discontinuity at x = 0.

 $(C) f(0) \rightarrow not defined$ 

$$f(0^{-}) = \lim_{h \to 0} h \cdot \sin \frac{\pi}{h} = 0$$
  
$$f(0^{+}) = \lim_{h \to 0} h \cdot \sin \frac{\pi}{h} = 0$$
  
$$\Rightarrow \text{ removable discontinuity at } x = 0.$$

$$(D) f (0^{-}) = \lim_{h \to 0} \frac{1}{\ln h} = 0$$
  
$$f (0^{+}) = \lim_{h \to 0} \frac{1}{\ln h} = 0$$
  
$$\Rightarrow \text{ removable discontinuity at } x = 0.$$



56. (A), (B), (C) Let the roots be  $\alpha$ ,  $\beta$ ,  $\gamma$   $\sum \alpha = -\alpha$   $|\alpha| = |\sum \alpha| \le \sum |\alpha| = 3$   $b = \sum \alpha \beta$   $|b| = |\sum \alpha \beta| \le \sum |\alpha| |\beta| = 3$  $c = \alpha \beta \gamma \implies |c| = \Pi |\alpha| = 1$ 

|   |   | • |
|---|---|---|
| C |   |   |
|   | • |   |
|   |   |   |
|   |   |   |



57. (A),(B),(C),(D)  
We have, f (x) = | [x] x | in - 1 < x \le 2
$$\Rightarrow f (x) = \begin{cases} -x, & -1 < x < 0\\ 0, & 0 \le x < 1\\ x, & 1 \le x < 2\\ 2x, & x = 2 \end{cases}$$

It is evident from the graph of this function that it is continuous but not differentiable at x = 0. Also, it is discontinuous at x = 1 and non-differentiable at x = 2.

| 58. (A), (B), (C), (D)                                                                                        |                                       |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------|
| We have, $\frac{P-Q}{p-q} = \frac{Q-R}{q-r} = \frac{R-P}{r-p} = d = \text{common diff}$                       | ference.                              |
| $\therefore (q-r) (P-Q) = (p-q) (Q-R)$                                                                        |                                       |
| $q\mathbf{P} - q\mathbf{Q} - \mathbf{P} + \mathbf{Q} = p\mathbf{Q} - p\mathbf{R} - q\mathbf{Q} + q\mathbf{R}$ | · · · · · · · · · · · · · · · · · · · |
| $\therefore pQ + qR + rP = pR + rQ + qP$                                                                      | (A)                                   |
| PQR                                                                                                           |                                       |
| Simplifying, p q r                                                                                            |                                       |
|                                                                                                               |                                       |
| = P(q - r) - Q(p - r) + R(p - q)                                                                              | (B)                                   |
| = 0  from  (A)                                                                                                | · · ·                                 |
| (B) can be written as $\Sigma P(q-r)$                                                                         |                                       |
| $\therefore \ \Sigma \mathbf{P}(\mathbf{q}-\mathbf{r}) = 0$                                                   | (C)                                   |
| (B) readjusting,                                                                                              |                                       |
| $\Sigma \mathbf{P}(\mathbf{q} - \mathbf{r}) = \Sigma \mathbf{p}(\mathbf{Q} - \mathbf{R}) = 0.$                | (D)                                   |

askllTians ... Powered By IITians 59. (A), (B) Р Let H be the centre of circle.  $\mathbf{H} \equiv \left(\frac{1}{2}, -\frac{3}{2}\right)$  and radius  $= \sqrt{\frac{1}{4} + \frac{9}{4}} = \sqrt{\frac{5}{2}}$ Η Given AB = PQHL = HM⇒  $\frac{\left|\frac{1}{2} - \frac{3}{2} - 1\right|}{\sqrt{2}} = \frac{\left|\frac{-3}{2} - \frac{m}{2}\right|}{\sqrt{1 + m^2}}$ x + v - 1 $\sqrt{2} = \frac{3+m}{2\sqrt{1+m^2}} \implies 8(1+m^2) = 9+m^2+6m$  $\Rightarrow 7m^2 - 6m - 1 = 0$  $\Rightarrow m = \frac{6 \pm \sqrt{36 + 28}}{14} = 1, -\frac{1}{7}$  $\therefore$  Equation of L<sub>1</sub> can be y - x = 0 or  $y + \frac{1}{7}x = 0$ i.e., x + 7y = 0∴ correct option is (A) or (B) **60.** (A),(C)  $\Rightarrow$  f(x) is increasing function Since f'(x) > 0 $\Rightarrow$ **g**(x) is decreasing function. and g'(x) < 0Since x + 1 > x(:g is decreasing)  $\therefore$  g (x + 1) < g (x)  $f \{g(x+1)\} < f \{g(x)\}$  {: f is increasing} ... or  $f \{g(x)\} > f \{g(x+1)\}$ Alternate (A) is correct. Now : x + 1 > xf(x + 1) > f(x) $\{::f is increasing\}$  $g \{f(x+1)\} < g \{f(x)\}$  {: g is decreasing}  $\Rightarrow$  $g \{f(x)\} > g \{f(x+1)\}$ Or Alternate (C) is correct.



 $\label{eq:powered By IITians} \end{tabular}$  Now replacing x by x - 1 in alternate (A) and (C) then f {g (x - 1)} > f {g (x)} and g {f (x - 1)} > g {f (x)}

Hence alternates (B) and (D) are wrong.