Solved Examples

Example 1:

Given are two sets A $\{1, 2, -2, 3\}$ and B = $\{1, 2, 3, 5\}$. Is the function f(x) = 2x - 1 defined from A to B?

Solution:

Out of all the ordered pairs, the ordered pairs which are related by the function f(x) = 2x - 1 are $\{(1, 1), (2, 3), (3, 5) \text{ But for } (-2) \text{ in A, we do not have any value in B. So, this function does } \text{not} \text{exist} \text{from A->B.}$

Example 2:

A function f is defined as f: N -> N (where N is natural number set) and f(x) = x+2. Is this function ONTO?

Solution:

Since, $N = \{1, 2, 3, 4, \dots \}$ and A = B = N

For: A->B

When x = 1 f(x) = 3

When x = 2 f(x) = 4

So f(x) never assume values 1 and 2. So, B have two elements which do not have any preimage in A. So, it is not an ONTO function.

Example 3:

Find the range and domain of the function f(x) = (2x+1)/(x-1) and also find its inverse.

Solution:

This function is not defined for x = 1. So, domain of the function is $R - \{1\}$.

Now, for finding the range

$$\text{Let}_{x}(2x+3)/(x-1) = y$$

$$=> 2x + 3 = yx - y$$

$$=> yx - 2x = y + 3$$

$$=> (y - 2)x = y + 3$$

$$=> x = (y+3)/(t-2)$$

So, y cannot assume value 2

Range of f(x) is $R - \{2\}$.

Inverse is y = (x+3/x-2).

Example 4:

Find domain and range of the function $f(x) = (x^2+2x+3)/(x^2-3x+2)$

Solution:

This function can be written as : $f(x) = (x^2+2x+3)/(x-1)(x-2)$.

So, domain of f(x) is $R - \{1, 2\}$

For range, let $(x^2+2x+3)/(x^2-3x+2) = y$

$$=> (1 - y)x^2 + (2x + 3y)x + 3 - 2y = 0$$

for x to be real, Discriminant of this equation must be ≥ 0

$$D \ge 0$$

$$=> (2 + 3y)^2 - 4(1 - y)(3 - 2y) > 0$$

$$=> 4 + 9y^2 + 12y - 4(3 + 2y^2 - 5y) > 0$$

$$=> y^2 + 32y - 8 > 0$$

$$=> (v + 16)^2 - 264 > 0$$

$$=> y < -16 - \sqrt{264}$$
 or $y > -16 + \sqrt{264}$.

Example 5:

Find the period of following functions

- (a) $\cos 3 x + \sin 5 x$
- (b) $|\cos x| + |\sin 2x|$
- (c) x |x|.

Solution:

(a)
$$f(x) = \cos 3x + \sin 5x$$

period of cos $3x = 2\Pi/3$ and period of sin $5x = 2\Pi/53$

L.C.M. of $2\Pi/3$ and $2\Pi/5$ is 2p

So period of f(x) is 2p.

Note: Let $g(x) = \cos 3x$

$$g((2\Pi/3)+x) = \cos 3 ((2\Pi/3)+x)$$

= $\cos (2\Pi + 3x)$
= $\cos 3x$
= $g(x)$

(b)
$$f(x) = |\cos x| + |\sin 2x|$$

Period of
$$|\cos x| = \prod$$

Period of $|\sin 2x| = \prod/2$

So, period of f(x) is Π

(c)
$$f(x) = x [x]$$

Let T be the period of this function

$$=> f(T + x) = f(x)$$

Let T = 1 (Therefore 1 is the smallest positive integer)

Equation (1) becomes

$$1 = [1 + x] - [x]$$

which is true for all $x \in R$

Period of f(x) is 1.

Example 6:

Show that the inverse of a linear fraction function is always a linear fraction function (except where it is not defined).

Solution:

Let, f(x) = (a+bx)/(c+dx) be the said linear fraction function.

Let at some x it attains value y, so,

$$(a+bx)/(c+dx) = y$$

=> a + bx - cy - dxy = 0
=> a - cy + x (b - dy) = 0
=> x = (cy-a)/(b-dy).

Which is again a linear fraction function defined in R except

at
$$x = -c/d$$
 and $y = b/d$

and inverse of the given function is, $y = \frac{(cx-a)}{(b-dx)}$.

Example 7:

If graph of function f(x) is as shown in the figure given below, then plot the graph of |f(x)|.

$$f(x) + 1$$
, $f(x + 2)$ and $f^{-1}(x)$

Solution:

(a) |f(x)| will reflect the graph of f(x) below x axis to the (-) ve y axis side. So the graph will be as shown in the figure given below.

(b) f(x) + 1 will just shift the graph by one unit position up. So the required graph is as shown in the figure given below.

Trans Web Educational Services Pvt. Ltd
B – 147,1st Floor, Sec-6, NOIDA, UP-201301
Website: www.askiitians.com Email. info@askiitians.com
Tel:0120-4616500 Ext - 204

(c) f(x + 2) will shift the graph of f(x) by two units to left, the graph will be as shown in the figure given below.

(d) $f^{-1}(x)$ is obtained by reflection of graph f(x) on the line y=x as shown in the figure given below.

Example 8:

Show that the following functions are even

(a)
$$f(x) = x^2/(2x^2-1) + x^2/2 + 1$$

(b)
$$f(x) = (a^x + a^{-x})/2$$

(c)
$$f(x) = x^2 - |x|$$

(a)
$$f(x) = x^2/(2x^2-1) + x^2/2 + 1$$

so,
$$f(-x) = (-x)^2/(2(-x)^2-1) + (-x)^2/2 + 1$$

= $x^2/(2x^2-1) + x^2/2 + 1 = f(x)$

so, f(x) in sum function.

(b)
$$f(x) = (a^x + a^{-x})/2$$

=> $f(-x) = (a^{-x} + a^x)/2 = f(x)$

so, f(x) is even function

(c)
$$f(x) = x^2 - |x|$$

=> $f(-x) = (-x)^2 - |-x| = x^2 - |x| = f(x)$

so, f(x) is even function.

Example 9:

Show that following functions are odd.

(a)
$$f(x) = (e^x-1)/(e^x+1)$$

(b)
$$f(x) = \log((1-x)/(1+x))$$

(c)
$$f(x) = \sqrt{1+x+x^2} - \sqrt{1-x+x^2}$$

(a)
$$f(x) = (e^x-1)/(e^x+1)$$

 $=> f(x) = (e^{-x}-1)/(e^{-x}+1) = (1-e^x)/(1+e^x)$
 $= -((e^x-1)/(e^x+1)) = -f(x)$
 $=> f(-x) = -f(x)$
 $=> so, f(x) is an odd function$

(b)
$$f(x) = \log ((1-x)/(1+x))$$

 $=> f(-x) = \log((1+x)/(1-x)) \log((1-x)/(1+x))^{-1}$
 $=> -\log((1-x)/(1+x))$
 $=> f(-x) = -f(x)$

so, f(x) is an odd function.

(c)
$$f(x) = \sqrt{1+x+x^2} - \sqrt{1-x+x^2}$$

$$f(-x) = \sqrt{(x^2-x+1)} - \sqrt{(1+x+x^2)}$$
$$= -[\sqrt{(1+x+x^2)} - \sqrt{(1-x+x^2)}]$$

$$f(-x) = -f(x)$$

so, f(x) is an odd function

Example 10:

If
$$f(x) = 1 + x$$
; $0 \le x \le 2$

Determine

(a)
$$g(x) = f(f(x))$$

(c)
$$f([x])$$

Where [] represents the greatest integer function.

(a)
$$g(x) = f(f(x)) = \begin{cases} 1 + f(x); 0 \le f(x) \le 2 \\ 3 - f(x); 2 < f(x) \le 3 \end{cases}$$

First consider the case

$$f(x) = 1 + x, 0 \le x \le 2$$

$$g(f(x)) = \begin{cases} 1 + 1 + x; 0 \le 1 + x \le 2 \\ 3 - 1 - x; 2 < 1 + x \le 3 \end{cases}$$

$$= \begin{cases} 2 - x; -1 \le x \le 1 \\ 2 - x; 1 < x \le 2 \end{cases}$$

Since our considered domain is $0 \le x \le 2$. So

$$g(f(x)) = \begin{cases} 2 + x; 0 \le x \le 1 \\ 2 - x; 1 < x \le 2 \end{cases}$$

For
$$f(x) = 0 3-x$$
, $2 < x \le 3$

$$g(f(x)) = \begin{cases} 1+3-x; 0 \le 3-x \le 2 \\ 3-3+x; 2 < 3-x \le 3 \end{cases}$$
$$= \begin{cases} 4-x; 1 \le x \le 3 \\ x; 0 \le x \le 1 \end{cases}$$

Since our considered domain is: 2 < x < 3 so

$$g(f(x)) = \{4 - x; 2 < x \le 3\}$$

So

$$g(f(x)) = \begin{cases} 2 + x; 0 \le x \le 1 \\ 2 - x; 1 < x \le 2 \\ 4 - x; 2 < x \le 3 \end{cases}$$

(b) Let
$$0 \le x \le 1$$

$$= f(2 + x) 2 \le 2 + x \le 3$$

But we observe that there is no single definition f(f(x)) for this interval.

Therefore we reduce the interval $0 \le x \le 1$ to $0 < x \le 1$.

Let $0 < x \le 1$

f(f(f(x)))

$$= f(2 + x); 2 < x + 2 < 3$$

$$= 3 - (2 + x)$$

$$= 1 - x$$

Let
$$1 < x \le 2$$

$$= f(2 - x); 0 < 2 - x < 1$$

$$= 1 + 2 - x$$

$$= 3 - x$$

Let
$$2 < x < 3$$

$$= f(f(f(x)))$$

$$= f(4 - x); 1 \le 4 - x < 2$$

$$= 1 + (4 - x)$$

$$= 5 - x$$

$$f(f(f(x))) = f(f(1)) = f(2) = 3$$

$$f(f(x))) = \begin{cases} 3; x = 0 \\ 1 - x; 0 < x \le 1 \\ 3 - x; 1 < x \le 2 \\ 5 - x; 2 < x \le 3 \end{cases}$$

(c) f([x])

Let
$$0 \le x < 1$$

$$f[x] = f(0) = 1$$

Let
$$1 \le x < 2$$

$$f[x] = f(1) = 2$$

Let
$$2 \le x < 3$$

$$f[x] = f(2) = 3$$

Let
$$x = 3$$

$$f([x]) = f(3) = 0$$

$$f[x] = \begin{cases} 1, 0 \le x < 1 \\ 2, 1 \le x < 2 \\ 3, 2 \le x < 3 \\ 0, x = 3 \end{cases}$$

(d) [f(x)]

First draw the graph of y = f(x)

Let
$$0 < x < 1$$

$$1 < f(x) < 2 => [f(x)] = 1$$

Let
$$1 < x < 2$$

$$2 < f(x) < 3 => [f(x)] = 2$$

Let
$$x = 2$$

$$f(x) = 3$$

$$[f(x)] = 3$$

Let
$$2 < x \le 3$$

$$0 < f(x) < 1 => [f(x)] = 0$$

$$\therefore [f(x)] = \begin{cases} 1,0 \le x < 1 \\ 2,1 \le x < 2 \\ 3,x = 2 \\ 0,2 < x \le 3 \end{cases}$$

Example 11:

If
$$x^2 + y^2 = 1$$

prove that
$$-\sqrt{2} \le x + y \le \sqrt{2}$$
.

Solution:

Since,
$$x^2 + y^2 = 1 = x = \cos \theta$$
, $y = \sin \theta$

Consider,

$$x + y = \cos \theta + \sin \theta$$

$$= \sqrt{2((1/\sqrt{2})\sin\theta + (1/\sqrt{2})\cos\theta})$$

$$= \sqrt{2}\sin((\Pi/4) + \theta)$$

Recall : $sin((\Pi/4)+\theta)$ can take maximum value 1 and minimum value -1.

$$=>|\sqrt{2}\sin((\pi/4)+\theta)| \leq \sqrt{2}$$

$$=> -\sqrt{2} < x + y < \sqrt{2}$$
. Hence proved.

Example 12:

Check the invertibility of the function $f(x) = (e^x - e^{-x})$; and then find its inverse.

Solution:

We have

$$f(x) = e^x - e^{-x}$$
; $x \in R$

$$\lim_{x\to a} f(x) = a$$

$$\lim_{x\to -a} f(x) = -a$$

$$f'(x) = e^x + e^{-x} > 0 \ \forall \sum \in \mathbb{R}$$

Therefore f: R -> R

$$f(x) = e^{x} - e^{-x}$$
 is a bijective function

Therefore f(x) is invertible

Now,
$$f(x) = y = t - 1/t$$
 [where $t = e^x$]
=> $t^2 - 1 = ty$
=> $t^2 - ty - 1 = 0$
=> $t = (y + \sqrt{(y^2 + 4)})/2$ [t cannot be negative]

Now

$$t = e^{x}$$

=> $e^{x} = (y+\sqrt{(y^{2}+4)})/2$
=> $x = \log_{e} ((y+\sqrt{(y^{2}+4)})/2)$

Therefore Inverse of $y = e^x - e^{-x}$ is $y = \log_e ((x + \sqrt{(x^2 + 4)})/2)$

Example 13:

If
$$f(x) = ((1-x)/(1+x))$$
 $x \ne 1$ and $x \in R$.

Then show that

(i)
$$f(1/x) = -f(x), x \neq 0$$

(ii)
$$f(f(x)) + f(f(1/x)) \ge 2$$
 for $x > 0$.

$$f(x) = (1-x)/(1+x), x \neq 1 \text{ and } x \in R$$

$$=> f(1/x) = (1-(1/x))/(1+(1/x)) = (x-1)/(x+1), x \neq 0$$

$$=> -f(x)$$
Now $f(f(x)) = (1-(1-x)/(1+x))/(1+(1-x)/(1+x)) = (2x)/2 = x$

and
$$f(f(1/x)) = (1-(x-1))/(1+x))/(1+(x-1)/(1+x)) = 2/2x = 1/x$$

 $= > f(f(x)) + f(f(1/x)) = x + 1/x$
 $= (\sqrt{x}-(1/\sqrt{x}))^2 + 2$
R.H.S. = 2 + a positive number ≥ 2
so $f(f(x)) + f(f(1/x)) \geq 2$

Example 14:

Let
$$A = R - \{3\},$$

B = R - {1}, let f: A -> B be defined by f(x) = (x-2)/(x-3). Is f bijective? Give reasons.

Solution:

(a) Let us test the function for injectivity

Let
$$x_1, x_2 \in A$$
 and $f(x_1) = f(x_2)$
=>(x_1 -2)/(x_1 -3) = (x_2 -2)/(x_2 -3)
=> $x_1 = x_2$

Therefore f is one-one function (injective)(1)

(b) Let us test the function for surjectivity

Let y be any arbitrary element of B and suppose there exists an x such that f(x) = y

$$(x-2)/(x-3) = y => x = (3y-2)/(y-1)$$

since $y \neq 1$, x is real

Also,
$$x \ne 3$$
, for if $x = 3$, then $3 = (3y-2)/(y-1)$

or
$$3y - 3 = 3y - 2 = > -3 = -2$$
, which is false

Thus $x = (3y-2)/(y-1) \varepsilon A$ such that f(x) = y i.e. $\forall y \varepsilon B$, we have $x \varepsilon A$.

and so f is surjective

This proves that f is bijective.

Tricky Examples

Example 15:

Show that if an odd function is invertible, then its inverse is also an odd function.

Solution:

Let y = f(x) be an odd function

Then

$$f(-x) = -f(x) = -y$$

Since it is invertible, so we can write

$$x = g(y)$$

Where $g(x) = f^{-1}(x)$

Consider,

$$g(-y) = g(-f(x))$$

$$= g(f(-x)) = -x = -g(y)$$

So g(x) is also an odd function.

Example 16:

Sketch the graph of each of the following functions

(a)
$$f(x) = x^4 - 2x^2 + 3$$

(b)
$$f(x) = 2x/(1+x^2)$$

(c)
$$f(x) = \sin 2x - 2\sin x$$
.

(a)
$$y = f(x) = x^4 - 2x^2 + 3$$

- (i) Domain of f(x) is R
- (ii) f(x) is even so graph will be symmetrical about y axis.

(iii)
$$y = x^4 - 2x^2 + 3 = (x^2 - 1)^2 + 2$$
.

So minimum value of y is at $x^2 = 1(x = \pm 1)$.

(iv) When x = 0 the value of y = 3

The graph of the function is as shown in fig.

- (b) $y = f(x) = 2x/(1+x^2)$.
 - (i) Domain = R
- (ii) f(x) = -f(x), so function is odd the graph is not symmetric about any axis but symmetric about origin.

So it is sufficient to consider only. $x \ge 0$

(iii) y = 0 when x = 0 there is no other point of intersection with co-ordinate axes.

(iv) As
$$(x - 2)^2 \ge 0$$

$$=> x^2 + 1 \ge 2x$$

So $2x/(x^2+1) < 1$ and equality holds at x = 1. Also from 0 to 1 the function increases and from 1 to a it decreases. So the graph is as shown in fig.

(c)
$$y = f(x) = \sin^2 x - 2\sin x$$

- (i) Domain of y is R
- (ii) $0 \le (\sin x 1)^2 \le 4$ => $0 \le \sin^2 x - 2\sin x + 1 \le 4$

 $=> -1 < \sin^2 x - 2\sin x < 3$

(iii) f(x) has period 2Π so it is

Sufficient to draw the graph for domain $[0, 2\Pi]$

(iv)
$$y = 0$$
 for $x = 0$, $n \Pi$

Note: More about increasing/decreasing we shall study in Module 5.

Example 17:

Solve
$$(x)^2 = [x]^2 + 2x$$

Where [x] represents greatest integer less than or equal to x.

(x) represents integer just greater than or equal to x.

Method 1:

Case I:

Let
$$x = n \epsilon I$$

=> Given equation becomes:

$$n^2 = n^2 + 2n$$

$$=> n = 0$$

Case II:

Let x ε I

i.e.
$$n \le x < n + 1$$

Given equation becomes:

$$(n - 1)^2 = n^2 + 2x$$

$$=> x = n + 1/2, n \in I$$

Therefore x = 0 or x = n + 1/2; $n \in I$

Method 2:

Case I:

 $x = [x] + \{x\}$; where $\{x\}$ represent fraction part of x.

$$x = (x) - (1 - \{x\})$$

 $(x + 1 - \{x\})^2 = (x - \{x\})^2 + 2x$ (Using given equation)

$$=> (x + 1 - \{x\})^2 + 1 + 2 (x - \{x\})^2 = (x - \{x\})^2 + 2x$$

$$=> 1 - 2 \{x\} = 0$$

$$=> \{x\} = 1/2$$

$$x = n + 1/2$$
, $n \in I$

Also, x = 0, by observation.

Example 18:

Find the set x if the function f:[2, a] -> x where $f(x) = 5 - 4x + x^2$ is bijective.

Solution:

$$y = x^2 - 4x + 5$$

$$= (x - 2)^2 + 1$$

When x = 2, y = 1

As $x \in [2, a)$ then $y \in [1, a]$

Therefore Set $X \equiv [1, a)$

Register for online classroom programmes targeting IIT JEE 2010 and 2011. You can also participate in the online tests conducted by askIITians and also give answers in AQAD (A Question A Day) to get a number of benefits in the online live classroom courses. Visit askIITians.com to read online Study material for IIT JEE and AIEEE preparation absolutely free.

Website: <u>www.askiitians.com</u> Email. <u>info@askiitians.com</u> Tel:0120-4616500 Ext - 204