Solved Examples

Example 1:

Given are two sets A \{1, 2, -2, 3\} and B = \{1, 2, 3, 5\}. Is the function \(f(x) = 2x - 1 \) defined from A to B?

Solution:

Out of all the ordered pairs, the ordered pairs which are related by the function \(f(x) = 2x - 1 \) are \{(1, 1), (2, 3), (3, 5)\} But for \(-2\) in A, we do not have any value in B. So, this function does not exist from A->B.

Example 2:

A function \(f \) is defined as \(f: \mathbb{N} \rightarrow \mathbb{N} \) (where \(\mathbb{N} \) is natural number set) and \(f(x) = x+2 \). Is this function ONTO?

Solution:

Since, \(\mathbb{N} = \{1, 2, 3, 4,\} \) and A = B = \(\mathbb{N} \)

For : A->B

When \(x = 1 \) \(f(x) = 3 \)

When \(x = 2 \) \(f(x) = 4 \)

So \(f(x) \) never assume values 1 and 2. So, B have two elements which do not have any pre-image in A. So, it is not an ONTO function.

Example 3:

Find the range and domain of the function \(f(x) = (2x+1)/(x-1) \) and also find its inverse.

Solution:

This function is not defined for \(x = 1 \). So, domain of the function is \(\mathbb{R} - \{1\} \).

Now, for finding the range
Let, \(\frac{2x+3}{x-1} = y \)

\[\Rightarrow 2x + 3 = yx - y \]
\[\Rightarrow yx - 2x = y + 3 \]
\[\Rightarrow (y - 2)x = y + 3 \]
\[\Rightarrow x = \frac{y+3}{y-2} \]

So, \(y \) cannot assume value 2

Range of \(f(x) \) is \(\mathbb{R} - \{2\} \).

Inverse is \(y = \frac{x+3}{x-2} \).

Example 4:

Find domain and range of the function \(f(x) = \frac{x^2+2x+3}{x^2-3x+2} \)

Solution:

This function can be written as: \(f(x) = \frac{x^2+2x+3}{(x-1)(x-2)} \).

So, domain of \(f(x) \) is \(\mathbb{R} - \{1, 2\} \).

For range, let \(\frac{x^2+2x+3}{x^2-3x+2} = y \)

\[\Rightarrow (1 - y)x^2 + (2x + 3y) x + 3 - 2y = 0 \]

for \(x \) to be real, Discriminant of this equation must be \(\geq 0 \)

\[D \geq 0 \]
\[\Rightarrow (2 + 3y)^2 - 4(1 - y)(3 -2y) \geq 0 \]
\[\Rightarrow 4 + 9y^2 + 12y - 4(3 + 2y^2 - 5y) \geq 0 \]
\[\Rightarrow y^2 + 32y - 8 \geq 0 \]
\[\Rightarrow (y + 16)^2 - 264 \geq 0 \]
\[\Rightarrow y < - 16 - \sqrt{264} \text{ or } y > - 16 + \sqrt{264}. \]
Example 5:

Find the period of following functions

(a) \(\cos 3x + \sin 5x \)

(b) \(|\cos x| + |\sin 2x| \)

(c) \(x - |x| \).

Solution:

(a) \(f(x) = \cos 3x + \sin 5x \)

period of \(\cos 3x = 2\pi/3 \) and period of \(\sin 5x = 2\pi/5 \)

L.C.M. of \(2\pi/3 \) and \(2\pi/5 \) is \(2\pi \)

So period of \(f(x) \) is \(2\pi \).

Note: Let \(g(x) = \cos 3x \)

\[
g((2\pi/3)+x) = \cos 3((2\pi/3)+x) \\
= \cos (2\pi + 3x) \\
= \cos 3x \\
= g(x)
\]

(b) \(f(x) = |\cos x| + |\sin 2x| \)

Period of \(|\cos x| = \pi \)

Period of \(|\sin 2x| = \pi/2 \)

So, period of \(f(x) \) is \(\pi \)

(c) \(f(x) = x \lfloor x \rfloor \)

Let \(T \) be the period of this function

\[
=> f(T + x) = f(x)
\]
\[=> T + x - [T + x] = x - [x]\]
\[=> T = [T + x] - [x]\] (1)
\[=> T = \text{integer} - \text{integer}\]
\[= \text{integer}\]

Let \(T = 1\) (Therefore 1 is the smallest positive integer)

Equation (1) becomes
\[1 = [1 + x] - [x]\]

which is true for all \(x \in \mathbb{R}\)

Period of \(f(x)\) is 1.

Example 6:

Show that the inverse of a linear fraction function is always a linear fraction function (except where it is not defined).

Solution:

Let, \(f(x) = \frac{a+bx}{c+dx}\) be the said linear fraction function.

Let at some \(x\) it attains value \(y\), so,

\[(a+bx)/(c+dx) = y\]

\[=> a + bx - cy - dxy = 0\]

\[=> a - cy + x (b - dy) = 0\]

\[=> x = (cy-a)/(b-dy).\]

Which is again a linear fraction function defined in \(\mathbb{R}\) except

at \(x = -c/d\) and \(y = b/d\)

and inverse of the given function is, \(y = (cx-a)/(b-dx)\).
Example 7:

If graph of function $f(x)$ is as shown in the figure given below, then plot the graph of $|f(x)|$.

$f(x) + 1$, $f(x + 2)$ and $f^{-1}(x)$

Solution:

(a) $|f(x)|$ will reflect the graph of $f(x)$ below x axis to the (-) ve y axis side. So the graph will be as shown in the figure given below.

(b) $f(x) + 1$ will just shift the graph by one unit position up. So the required graph is as shown in the figure given below.
(c) $f(x + 2)$ will shift the graph of $f(x)$ by two units to left, the graph will be as shown in the figure given below.

![Graph](image)

(d) $f^{-1}(x)$ is obtained by reflection of graph $f(x)$ on the line $y = x$ as shown in the figure given below.

![Graph](image)

Example 8:

Show that the following functions are even

(a) $f(x) = \frac{x^2}{2x^2-1} + \frac{x^2}{2} + 1$

(b) $f(x) = \frac{a^x + a^{-x}}{2}$

(c) $f(x) = x^2 - |x|

Solution:

(a) $f(x) = \frac{x^2}{2x^2-1} + \frac{x^2}{2} + 1$

so, $f(-x) = \frac{(-x)^2}{2(-x)^2-1} + \frac{(-x)^2}{2} + 1$

$= \frac{x^2}{2x^2-1} + \frac{x^2}{2} + 1 = f(x)$
so, f(x) in sum function.

(b) \[f(x) = \frac{a^x + a^{-x}}{2} \]

\[\Rightarrow f(-x) = \frac{a^{-x} + a^x}{2} = f(x) \]

so, f(x) is even function

(c) \[f(x) = x^2 - |x| \]

\[\Rightarrow f(-x) = (-x)^2 - |-x| = x^2 - |x| = f(x) \]

so, f(x) is even function.

Example 9:

Show that following functions are odd.

(a) \[f(x) = \frac{e^x - 1}{e^x + 1} \]

(b) \[f(x) = \log \left(\frac{1-x}{1+x} \right) \]

(c) \[f(x) = \sqrt{1+x+x^2} - \sqrt{1-x+x^2} \]

Solution:

(a) \[f(x) = \frac{e^x - 1}{e^x + 1} \]

\[\Rightarrow f(x) = \frac{e^{-x} - 1}{e^{-x} + 1} = \frac{1-e^x}{1+e^x} \]

\[= - \left(\frac{e^x - 1}{e^x + 1} \right) = -f(x) \]

\[\Rightarrow f(-x) = -f(x) \]

\[\Rightarrow \text{so, f(x) is an odd function} \]

(b) \[f(x) = \log \left(\frac{1-x}{1+x} \right) \]

\[\Rightarrow f(-x) = \log \left(\frac{1+x}{1-x} \right) \log \left(\frac{1-x}{1+x} \right)^{-1} \]

\[\Rightarrow -\log \left(\frac{1-x}{1+x} \right) \]

\[\Rightarrow f(-x) = -f(x) \]
so, f(x) is an odd function.

(c) \(f(x) = \sqrt{1+x+x^2} - \sqrt{1-x+x^2} \)

\[f(-x) = \sqrt{x^2-x+1} - \sqrt{1+x+x^2} \]
\[= -[\sqrt{1+x+x^2} - \sqrt{1-x+x^2}] \]
\[f(-x) = -f(x) \]

so, f(x) is an odd function

Example 10:

If \(f(x) = 1 + x \); \(0 \leq x \leq 2 \)

\[= 3 - x \]; \(2 < x \leq 3 \)

Determine

(a) \(g(x) = f(f(x)) \)

(b) \(f(f(f(x))) \)

(c) \(f([x]) \)

(d) \([f(x)] \)

Where \([\]\) represents the greatest integer function.

Solution:
(a) \[g(x) = f(f(x)) = \begin{cases}
1 + f(x), & 0 \leq f(x) \leq 2 \\
3 - f(x), & 2 < f(x) \leq 3
\end{cases} \]

First consider the case
\[f(x) = 1 + x, \quad 0 \leq x \leq 2 \]
\[g(f(x)) = \begin{cases}
1 + 1 + x, & 0 \leq 1 + x \leq 2 \\
3 - 1 - x, & 2 < 1 + x \leq 3
\end{cases} \]
\[= \begin{cases}
2 - x, & -1 \leq x \leq 1 \\
2 - x, & 1 < x \leq 2
\end{cases} \]

Since our considered domain is \(0 \leq x \leq 2 \). So
\[g(f(x)) = \begin{cases}
2 + x, & 0 \leq x \leq 1 \\
2 - x, & 1 < x \leq 2
\end{cases} \]

For \(f(x) = 0 \), \(2 < x \leq 3 \)
\[g(f(x)) = \begin{cases}
1 + 3 - x, & 0 \leq 3 - x \leq 2 \\
3 - 3 + x, & 2 < 3 - x \leq 3
\end{cases} \]
\[= \begin{cases}
4 - x, & 1 \leq x \leq 3 \\
x, & 0 \leq x \leq 1
\end{cases} \]

Since our considered domain is \(2 < x \leq 3 \) so
\[g(f(x)) = \begin{cases}
4 - x, & 2 < x \leq 3
\end{cases} \]

So
\[g(f(x)) = \begin{cases}
2 + x, & 0 \leq x \leq 1 \\
2 - x, & 1 < x \leq 2 \\
4 - x, & 2 < x \leq 3
\end{cases} \]

(b) Let \(0 \leq x \leq 1 \)
\[f(f(f(x))) \]
\[= f(2 + x) \quad 2 \leq 2 + x \leq 3 \]

But we observe that there is no single definition \(f(f(x)) \) for this interval.

Therefore we reduce the interval \(0 \leq x \leq 1 \) to \(0 < x \leq 1 \).

Let \(0 < x \leq 1 \)
\[f(f(f(x))) \]
\[f(2 + x); \quad 2 < x + 2 < 3 \]

\[= 3 - (2 + x) \]

\[= 1 - x \]

Let \(1 < x \leq 2 \)

\[f(2 - x); \quad 0 < 2 - x < 1 \]

\[= 1 + 2 - x \]

\[= 3 - x \]

Let \(2 < x \leq 3 \)

\[f(f(f(x))) \]

\[f(4 - x); \quad 1 < 4 - x < 2 \]

\[= 1 + (4 - x) \]

\[= 5 - x \]

\[f(f(f(x))) = f(f(1)) = f(2) = 3 \]

\[f(f(x)) = \begin{cases}
3; & x = 0 \\
1 - x; & 0 < x \leq 1 \\
3 - x; & 1 < x \leq 2 \\
5 - x; & 2 < x \leq 3
\end{cases} \]

(c) \(f([x]) \)

Let \(0 \leq x < 1 \)

\[f[x] = f(0) = 1 \]

Let \(1 \leq x < 2 \)

\[f[x] = f(1) = 2 \]

Let \(2 \leq x < 3 \)

\[f[x] = f(2) = 3 \]
Let $x = 3$

$$f([x]) = f(3) = 0$$

\[
\therefore f[x] = \begin{cases}
1.0 \leq x < 1 \\
2.1 \leq x < 2 \\
3.2 \leq x < 3 \\
0, x = 3
\end{cases}
\]

(d) $[f(x)]$

First draw the graph of $y = f(x)$

Let $0 < x < 1$

$1 < f(x) < 2 \Rightarrow [f(x)] = 1$

Let $1 < x < 2$

$2 < f(x) < 3 \Rightarrow [f(x)] = 2$

Let $x = 2$

$f(x) = 3$

$[f(x)] = 3$

Let $2 < x \leq 3$

$0 < f(x) < 1 \Rightarrow [f(x)] = 0$
Example 11:

If \(x^2 + y^2 = 1 \)

prove that \(-\sqrt{2} \leq x + y \leq \sqrt{2}\).

Solution:

Since, \(x^2 + y^2 = 1 \) => \(x = \cos \theta, \ y = \sin \theta \)

Consider,

\[x + y = \cos \theta + \sin \theta \]

\[= \sqrt{2}((1/\sqrt{2})\sin \theta + (1/\sqrt{2})\cos \theta) \]

\[= \sqrt{2}\sin((\pi/4) + \theta) \]

Recall : \(\sin((\pi/4)+\theta) \) can take maximum value 1 and minimum value -1.

\[\implies |\sqrt{2} \sin((\pi/4)+\theta)| \leq \sqrt{2} \]

\[\implies - \sqrt{2} \leq x + y \leq \sqrt{2}. \quad \text{Hence proved.} \]

Example 12:

Check the invertibility of the function \(f(x) = (e^x - e^{-x}); \) and then find its inverse.

Solution:

We have

\[f(x) = e^x - e^{-x}; \ x \in \mathbb{R} \]

\[\lim_{x \to 0} f(x) = 0 \]

\[\lim_{x \to -\infty} f(x) = -\infty \]

\[f'(x) = e^x + e^{-x} > 0 \quad \forall \ x \in \mathbb{R} \]
Therefore \(f : \mathbb{R} \rightarrow \mathbb{R} \)

\[f(x) = e^x - e^{-x} \] is a bijective function

Therefore \(f(x) \) is invertible

Now, \(f(x) = y = t - 1/t \) [where \(t = e^x \)]

\[
\Rightarrow t^2 - 1 = ty \\
\Rightarrow t^2 - ty - 1 = 0 \\
\Rightarrow t = (y+\sqrt{y^2+4})/2 \quad [t \text{ cannot be negative}]
\]

Now

\[t = e^x \]

\[
\Rightarrow e^x = (y+\sqrt{y^2+4})/2 \\
\Rightarrow x = \log_e ((y+\sqrt{y^2+4}))/2)
\]

Therefore Inverse of \(y = e^x - e^{-x} \) is \(y = \log_e ((x+\sqrt{x^2+4}))/2) \)

Example 13:

If \(f(x) = ((1-x)/(1+x)) \ x \neq 1 \) and \(x \in \mathbb{R} \).

Then show that

(i) \(f(1/x) = -f(x), \ x \neq 0 \)

(ii) \(f(f(x)) + f(f(1/x)) \geq 2 \) for \(x > 0 \).

Solution:

\[f(x) = (1-x)/(1+x), \ x \neq 1 \] and \(x \in \mathbb{R} \)

\[
\Rightarrow f(1/x) = (1-(1/x))/(1+(1/x)) = (x-1)/(x+1), \ x \neq 0 \\
\Rightarrow - f(x)
\]

Now \(f(f(x)) = (1-(1-x)/(1+x))/(1+(1-x)/(1+x)) = (2x)/2 = x \)
and \(f(f(1/x)) = \frac{1-(x-1)}{(1+x)}/(1+(x-1)/(1+x)) = 2/2x = 1/x \)

\[\Rightarrow f(f(x)) + f(f(1/x)) = x + 1/x \]

\[= (\sqrt{x}-(1/\sqrt{x}))^2 + 2 \]

R.H.S. = 2 + a positive number \(\geq 2 \)
so \(f(f(x)) + f(f(1/x)) \geq 2 \)

Example 14:

Let \(A = R - \{3\} \),

\(B = R - \{1\} \), let \(f: A \rightarrow B \) be defined by \(f(x) = (x-2)/(x-3) \). Is \(f \) bijective? Give reasons.

Solution:

(a) Let us test the function for injectivity

Let \(x_1, x_2 \in A \) and \(f(x_1) = f(x_2) \)

\[\Rightarrow \left(\frac{x_1-2}{x_1-3}\right) = \left(\frac{x_2-2}{x_2-3}\right) \]

\[\Rightarrow x_1 = x_2 \]

Therefore \(f \) is one-one function (injective) \(\ldots (1) \)

(b) Let us test the function for surjectivity

Let \(y \) be any arbitrary element of \(B \) and suppose there exists an \(x \) such that \(f(x) = y \)

\[\frac{x-2}{x-3} = y \Rightarrow x = \frac{(3y-2)}{(y-1)} \]

since \(y \neq 1 \), \(x \) is real

Also, \(x \neq 3 \), for if \(x = 3 \), then \(3 = \frac{(3y-2)}{(y-1)} \)

or \(3y - 3 = 3y - 2 \Rightarrow -3 = -2 \), which is false

Thus \(x = \frac{(3y-2)}{(y-1)} \in A \) such that \(f(x) = y \) i.e. \(\forall y \in B \), we have \(x \in A \).
and so \(f \) is surjective
This proves that \(f \) is bijective.

Tricky Examples

Example 15:
Show that if an odd function is invertible, then its inverse is also an odd function.

Solution:

Let \(y = f(x) \) be an odd function

Then
\[
 f(-x) = -f(x) = -y
\]

Since it is invertible, so we can write
\[
 x = g(y)
\]

Where \(g(x) = f^{-1}(x) \)

Consider,
\[
 g(-y) = g(-f(x))
 = g(f(-x)) = -x = -g(y)
\]

So \(g(x) \) is also an odd function.

Example 16:

Sketch the graph of each of the following functions

(a) \(f(x) = x^4 - 2x^2 + 3 \)

(b) \(f(x) = 2x/(1+x^2) \)

(c) \(f(x) = \sin 2x - 2 \sin x \)

Solution:

(a) \(y = f(x) = x^4 - 2x^2 + 3 \)
(i) Domain of \(f(x) \) is \(\mathbb{R} \)

(ii) \(f(x) \) is even so graph will be symmetrical about \(y \) axis.

(iii) \(y = x^4 - 2x^2 + 3 = (x^2 - 1)^2 + 2. \)

So minimum value of \(y \) is at \(x^2 = 1(x = \pm 1) \).

(iv) When \(x = 0 \) the value of \(y = 3 \)

The graph of the function is as shown in fig.

(b) \(y = f(x) = \frac{2x}{1+x^2} \).

(i) Domain = \(\mathbb{R} \)

(ii) \(f(x) = -f(x) \), so function is odd the graph is not symmetric about any axis but symmetric about origin.

So it is sufficient to consider only. \(x \geq 0 \)

(iii) \(y = 0 \) when \(x = 0 \) there is no other point of intersection with co-ordinate axes.

(iv) As \((x - 2)^2 \geq 0 \)

\[\Rightarrow x^2 + 1 \geq 2x \]
So $\frac{2x}{(x^2+1)} < 1$ and equality holds at $x = 1$. Also from 0 to 1 the function increases and from 1 to a it decreases. So the graph is as shown in fig.

(c) $y = f(x) = \sin^2 x - 2\sin x$

(i) Domain of y is \mathbb{R}

(ii) $0 \leq (\sin x - 1)^2 \leq 4$

$\Rightarrow 0 \leq \sin^2 x - 2\sin x + 1 \leq 4$

$\Rightarrow -1 \leq \sin^2 x - 2\sin x \leq 3$

(iii) $f(x)$ has period 2π so it is

Sufficient to draw the graph for domain $[0, 2\pi]$

(iv) $y = 0$ for $x = 0, n\pi$

Note: More about increasing/decreasing we shall study in Module 5.

Example 17:

Solve $(x)^2 = [x]^2 + 2x$

Where $[x]$ represents greatest integer less than or equal to x.

(x) represents integer just greater than or equal to x.

Solution:
Method 1:

Case I:

Let \(x = n \in \mathbb{I} \)

\(\Rightarrow \) Given equation becomes:

\[n^2 = n^2 + 2n \]

\(\Rightarrow n = 0 \)

Case II:

Let \(x \in \mathbb{I} \)

i.e. \(n \leq x < n + 1 \)

Given equation becomes:

\[(n - 1)^2 = n^2 + 2x \]

\(\Rightarrow x = n + 1/2, n \in \mathbb{I} \)

Therefore \(x = 0 \) or \(x = n + 1/2; n \in \mathbb{I} \)

Method 2:

Case I:

\(x \notin \mathbb{I} \)

\(x = [x] + \{x\}; \) where \(\{x\} \) represent fraction part of \(x \).

\(x = (x) - (1 - \{x\}) \)

\((x + 1 - \{x\})^2 = (x - \{x\})^2 + 2x \) (Using given equation)

\(\Rightarrow (x + 1 - \{x\})^2 + 1 + 2 (x - \{x\})^2 = (x - \{x\})^2 + 2x \)

\(\Rightarrow 1 - 2 \{x\} = 0 \)

\(\Rightarrow \{x\} = 1/2 \)
\[x = n + 1/2, \ n \in \mathbb{I} \]

Also, \(x = 0 \), by observation.

Example 18:

Find the set \(X \) if the function \(f: [2, \alpha] \to X \) where \(f(x) = 5 - 4x + x^2 \) is bijective.

Solution:

\[y = x^2 - 4x + 5 \]
\[= (x - 2)^2 + 1 \]

When \(x = 2 \), \(y = 1 \)

As \(x \in [2, \alpha) \) then \(y \in [1, \alpha) \)

Therefore Set \(X \equiv [1, \alpha) \)

Register for online classroom programmes targeting IIT JEE 2010 and 2011. You can also participate in the online tests conducted by askIITians and also give answers in AQAD (A Question A Day) to get a number of benefits in the online live classroom courses. Visit askIITians.com to read online Study material for IIT JEE and AIEEE preparation absolutely free.