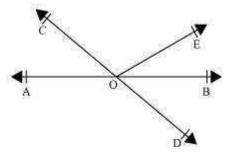
<u>Class IX Chapter 6 – Lines and</u> <u>Angles Maths</u>

Exercise 6.1 Question 1:

In the given figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and

 $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.



Answer:

AB is a straight line, rays OC and OE stand on it.

$$\therefore \angle AOC + \angle COE + \angle BOE = 180^{\circ}$$

$$\Rightarrow$$
 (\angle AOC + \angle BOE) + \angle COE = 180°

$$\Rightarrow$$
 70° + \angle COE = 180°

$$\Rightarrow \angle COE = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

Reflex
$$\angle COE = 360^{\circ} - 110^{\circ} = 250^{\circ}$$

CD is a straight line, rays OE and OB stand on it.

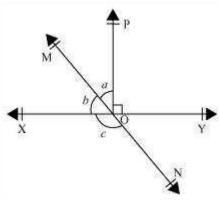
$$\therefore \angle COE + \angle BOE + \angle BOD = 180^{\circ}$$

$$\Rightarrow$$
 110° + \angle BOE + 40° = 180°

$$\Rightarrow \angle BOE = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

Question 2:

In the given figure, lines XY and MN intersect at O. If \angle POY = $^{90^{\circ}}$ and a:b = 2 : 3, find c.



Answer:

Let the common ratio between a and b be x. \therefore

$$a = 2x$$
, and $b = 3x$

XY is a straight line, rays OM and OP stand on it.

$$\therefore$$
 \angle XOM + \angle MOP + \angle POY = 180°

$$b + a + \angle POY = 180^{\circ}$$

$$3x + 2x + 90^{\circ} = 180^{\circ}$$

$$5x = 90^{\circ} x = 18^{\circ} a =$$

$$2x = 2 \times 18 = 36^{\circ} b =$$

$$3x = 3 \times 18 = 54^{\circ}$$

MN is a straight line. Ray OX stands on it.

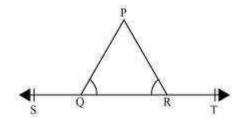
$$\therefore$$
 b + c = 180° (Linear Pair)

$$54^{\circ} + c = 180^{\circ} c = 180^{\circ} -$$

$$54^{\circ} = 126^{\circ}$$

Question 3:

In the given figure, \angle PQR = \angle PRQ, then prove that \angle PQS = \angle PRT.



Answer:

In the given figure, ST is a straight line and ray QP stands on it.

$$\therefore$$
 ∠ PQS + ∠ PQR = 180° (Linear Pair)

$$\angle PQR = 180^{\circ} - \angle PQS (1)$$

$$\angle$$
PRT + \angle PRQ = 180° (Linear Pair)

$$\angle$$
PRQ = 180° - \angle PRT (2)

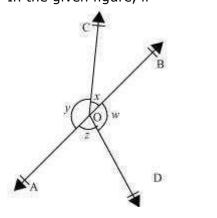
It is given that \angle PQR = \angle PRQ.

Equating equations (1) and (2), we obtain

$$180^{\circ} - {\overset{\angle}{PQS}} = {\overset{\circ}{PQS}} = 180 - PRT \angle PQS$$

Question 4:

In the given figure, if x + y = w + z



Answer:

It can be observed that, x + y + z + w then prove that AOB is a line.

= 360° (Complete angle) It is given

that,
$$x + y = z + w \therefore x + y + x + y$$

= 360°

$$2(x + y) = 360^{\circ} x$$

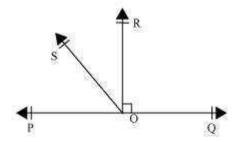
$$+ y = 180^{\circ}$$

Since x and y form a linear pair, AOB is a line.

Question 5:

In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$$\angle ROS = \frac{1}{2} (\angle QOS - \angle POS).$$



It is given that OR PQ

∴ ∴POR = 90°

$$\therefore$$
 :POS + :SOR = 90°

$$\therefore ROS = 90^{\circ} - \therefore POS \dots (1)$$

$$\therefore$$
QOR = 90° (As OR \therefore PQ)

$$\therefore$$
QOS - \therefore ROS = 90°

$$\therefore ROS = \therefore QOS - 90^{\circ} \dots (2)$$

On adding equations (1) and (2), we obtain

$$\therefore ROS = \therefore QOS - \therefore POS 2$$

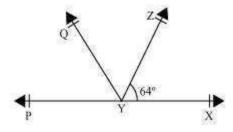
$$\therefore ROS = \frac{1}{2} \cdot QOS - \therefore POS$$
 (

Question 6:

It is given that \therefore XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects \therefore ZYP, find \therefore XYQ and reflex \therefore QYP.

 \perp

Answer:



It is given that line YQ bisects \therefore PYZ.

Hence,
$$\therefore$$
QYP = \therefore ZYQ

It can be observed that PX is a line. Rays YQ and YZ stand on it.

$$\therefore$$
 $\therefore XYZ + \therefore ZYQ + \therefore QYP = 180^{\circ}$

$$...64^{\circ} + 2 ...QYP = 180^{\circ}$$

$$\therefore 2 : QYP = 180^{\circ} - 64^{\circ} = 116^{\circ}$$

$$\therefore$$
 \therefore QYP = 58°

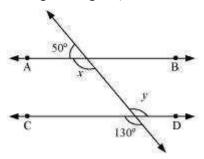
Also,
$$\therefore$$
ZYQ = \therefore QYP = 58°

Reflex
$$\therefore$$
QYP = 360° - 58° = 302°

$$\therefore XYQ = \therefore XYZ + \therefore ZYQ$$

$$= 64^{\circ} + 58^{\circ} = 122^{\circ}$$

In the given figure, find the values of x and y and then show that AB || CD.



Answer:

It can be observed that, 50°

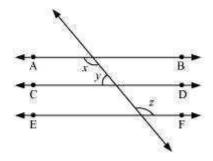
$$+ x = 180^{\circ}$$
 (Linear pair) $x =$

Also, $y = 130^{\circ}$ (Vertically opposite angles)

As x and y are alternate interior angles for lines AB and CD and also measures of these angles are equal to each other, therefore, line AB || CD.

Question 2:

In the given figure, if AB || CD, CD || EF and y: z = 3: 7, find x.



Answer:

It is given that AB || CD and CD || EF

∴ AB || CD || EF (Lines parallel to the same line are parallel to each other)

It can be observed that x = z (Alternate interior angles) ... (1)

It is given that y: z = 3: 7

Let the common ratio between y and z be a. \therefore

$$y = 3a$$
 and $z = 7a$

Also, $x + y = 180^{\circ}$ (Co-interior angles on the same side of the transversal) $z + y = 180^{\circ}$ [Using equation (1)]

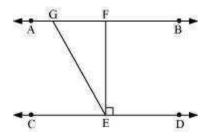
$$7a + 3a = 180^{\circ}$$

$$18^{\circ}$$
 : $x = 7a = 7 \times 18^{\circ} =$

126°

Question 3:

In the given figure, If AB || CD, EF \therefore CD and \therefore GED 126°, find \therefore AGE, \therefore GEF and = \therefore FGE.



Answer:

It is given that,

$$\mathsf{EF} \; \mathrel{\dot{\cdot}}\; \mathsf{CD}$$

∴AGE and ∴GED are alternate interior angles.

However, $:AGE + :FGE = 180^{\circ}$ (Linear pair)

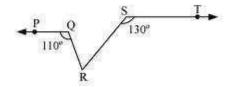
$$\therefore 126^{\circ} + \therefore FGE = 180^{\circ}$$

$$\therefore$$
 :FGE = 180° - 126° = 54°

Question 4:

In the given figure, if PQ || ST, \therefore PQR = 110° and \therefore RST = 130°, find \therefore QRS.

[Hint: Draw a line parallel to ST through point R.]



Answer:



Let us draw a line XY parallel to ST and passing through point R.

 \therefore PQR + \therefore QRX = 180° (Co-interior angles on the same side of transversal QR)

$$\therefore 110^{\circ} + \therefore QRX = 180^{\circ}$$

Also,

 \therefore RST + \therefore SRY = 180° (Co-interior angles on the same side of transversal SR)

XY is a straight line. RQ and RS stand on it.

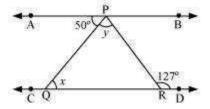
$$\therefore$$
 \therefore QRX + \therefore QRS + \therefore SRY = 180°

$$^{\circ} + ::QRS + 50^{\circ} = 180^{\circ} 70$$

$$\therefore$$
QRS = 180° - 120° = 60°

Question 5:

In the given figure, if AB || CD, \therefore APQ = 50° and \therefore PRD = 127°, find x and y.



Answer:

 $\therefore APR = \therefore PRD$ (Alternate interior angles)

$$50^{\circ} + y = 127^{\circ} y =$$

$$127^{\circ} - 50^{\circ} y =$$

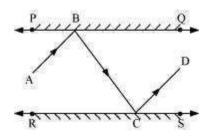
770

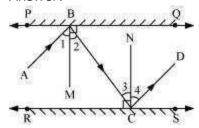
Also, :APQ = :PQR (Alternate interior angles)

$$50^{\circ} = x \therefore x = 50^{\circ} \text{ and } y = 77^{\circ}$$

Question 6:

In the given figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.





Let us draw BM \therefore PQ and CN \therefore RS.

As PQ || RS, Therefore, BM || CN

Thus, BM and CN are two parallel lines and a transversal line BC cuts them at B and C respectively.

 $\therefore \therefore = \therefore 3$ (Alternate interior angles) 2

However, $\therefore 1 = \therefore 2$ and $\therefore 3 = \therefore 4$ (By laws of reflection)

$$\therefore$$
 $\therefore 1 = \therefore 2 = \therefore 3 = \therefore 4$

Also,
$$\therefore 1 + \therefore 2 = \therefore 3 + \therefore 4$$

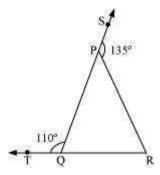
However, these are alternate interior angles. \therefore

AB || CD

Exercise 6.3 Question

1:

In the given figure, sides QP and RQ of Δ PQR are produced to points S and T respectively. If \therefore SPR = 135° and \therefore PQT = 110°, find \therefore PRQ.



It is given that,

$$\therefore$$
SPR = 135° and \therefore PQT = 110°

$$\therefore$$
SPR + \therefore QPR = 180° (Linear pair angles)

$$\therefore 135^{\circ} + \therefore QPR = 180^{\circ}$$

Also, $:PQT + :PQR = 180^{\circ}$ (Linear pair angles)

$$\therefore 110^{\circ} + \therefore PQR = 180^{\circ}$$

$$\therefore$$
 PQR = 70°

As the sum of all interior angles of a triangle is 180° , therefore, for ΔPQR ,

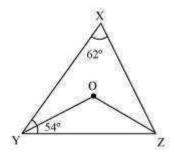
$$\therefore QPR + \therefore PQR + \therefore PRQ = 180^{\circ}$$

$$...45^{\circ} + 70^{\circ} + ...PRQ = 180^{\circ}$$

$$\therefore$$
 ::PRQ = 180° - 115°

Question 2:

In the given figure, $\therefore X = 62^{\circ}$, $\therefore XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\therefore XYZ$ and $\therefore XZY$ respectively of $\triangle XYZ$, find $\therefore OZY$ and $\therefore YOZ$.



As the sum of all interior angles of a triangle is 180° , therefore, for ΔXYZ ,

$$\therefore X + \therefore XYZ + \therefore XZY = 180^{\circ}$$

$$^{\circ} + 54^{\circ} + ::XZY = 180^{\circ} 62$$

$$\therefore XZY = 180^{\circ} - 116^{\circ}$$

$$\therefore XZY = 64^{\circ}$$

 \therefore OZY = $\frac{2}{32}$ 32° (OZ is the angle bisector of \therefore XZY) =

Similarly, \therefore OYZ = $\frac{1}{2}$ = 27°

Using angle sum property for ΔOYZ , we obtain

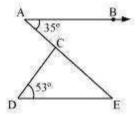
$$:: OYZ + :: YOZ + :: OZY = 180^{\circ}$$

$$^{\circ} + ::YOZ + 32^{\circ} = 180^{\circ} 27$$

$$::YOZ = 180^{\circ} - 59^{\circ}$$

Question 3:

In the given figure, if AB || DE, \therefore BAC = 35° and \therefore CDE = 53°, find \therefore DCE.



AB || DE and AE is a transversal.

∴BAC = ∴CED (Alternate interior angles)

In ΔCDE,

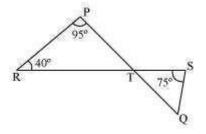
 \therefore CDE + \therefore CED + \therefore DCE = 180° (Angle sum property of a triangle)

$$^{\circ} + 35^{\circ} + ...DCE = 180^{\circ} 53$$

$$\therefore DCE = 180^{\circ} - 88^{\circ}$$

Question 4:

In the given figure, if lines PQ and RS intersect at point T, such that \therefore PRT = 40°, \therefore RPT = 95° and \therefore TSQ = 75°, find \therefore SQT.



Answer:

Using angle sum property for ΔPRT , we obtain

$$\therefore PRT + \therefore RPT + \therefore PTR = 180^{\circ}$$

$$^{\circ} + 95^{\circ} + ... PTR = 180^{\circ} 40$$

$$\therefore PTR = 180^{\circ} - 135^{\circ}$$

$$\therefore$$
STQ = \therefore PTR = 45° (Vertically opposite angles)

By using angle sum property for Δ STQ, we obtain

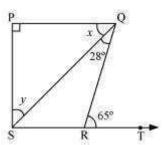
$$\therefore$$
STQ + \therefore SQT + \therefore QST = 180°

$$^{\circ} + ... SQT + 75^{\circ} = 180^{\circ} 45$$

$$..SQT = 180^{\circ} - 120^{\circ}$$

Question 5:

In the given figure, if PQ \therefore PS, PQ || SR, \therefore SQR = 2° and \therefore QRT = 65°, then find 8 the values of x and y.



Answer:

It is given that PQ || SR and QR is a transversal line.

$$\therefore$$
PQR = \therefore QRT (Alternate interior angles) x

$$+28^{\circ} = 65^{\circ} x = 65^{\circ} - 28^{\circ} x = 37^{\circ}$$

By using the angle sum property for ΔSPQ , we obtain

$$\therefore$$
SPQ + x + y = 180°

$$90^{\circ} + 37^{\circ} + y = 180^{\circ} y$$

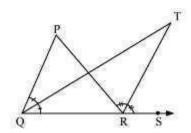
$$= 180^{\circ} - 127^{\circ} \text{ y} = 53^{\circ}$$

 $x = 37^{\circ}$ and $y = 53^{\circ}$

Question 6:

In the given figure, the side QR of Δ PQR is produced to a point S. If the bisectors of

∴PQR and ∴PRS meet at point T, then prove that ∴QTR= $\frac{1}{2}$ ∴QPR.



Answer:

In $\triangle QTR$, $\therefore TRS$ is an exterior angle.

$$\therefore QTR = \therefore TRS - \therefore TQR (1)$$

For $\triangle PQR$, $\therefore PRS$ is an external angle.

$$\therefore$$
 QPR + 2 \therefore TQR = 2 \therefore TRS (As QT and RT are angle bisectors)

$$\therefore$$
QPR = 2(\therefore TRS - \therefore TQR)

$$\therefore$$
QPR = 2 \therefore QTR [By using equation (1)]

$$\therefore QTR = \frac{1}{2} \therefore QPR$$