<u>Class IX Chapter 7 – Triangles</u> <u>Maths</u>

Exercise 7.1 Question

1:

In quadrilateral ACBD, AC = AD and AB bisects \angle A (See the given figure). Show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD?

Answer:

In △ABC and △ABD,

AC = AD (Given)

 $\angle CAB = \angle DAB$ (AB bisects $\angle A$)

AB = AB (Common)

∴ $\triangle ABC \cong \triangle ABD$ (By SAS congruence rule)

 \therefore BC = BD (By CPCT)

Therefore, BC and BD are of equal lengths.

Question 2:

ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (See the given figure).

Prove that

(i)
$$\triangle ABD \cong \triangle BAC$$

(ii)
$$BD = AC$$

(iii)
$$^{\angle\angle}$$
 ABD = BAC.

Answer:

In $\triangle ABD$ and $\triangle BAC$,

$$AD = BC (Given)$$

Z Z

DAB = CBA (Given)

AB = BA (Common)

∴ $\triangle ABD \cong \triangle BAC$ (By SAS congruence rule)

∴ BD = AC (By CPCT) And, \angle ABD

= ∠BAC (By CPCT)

Question 3:

AD and BC are equal perpendiculars to a line segment AB (See the given figure).

Show that CD bisects AB.

In ΔBOC and ΔAOD,

 $\angle BOC = \angle AOD$ (Vertically opposite angles)

 \angle CBO = \angle DAO (Each 90°)

BC = AD (Given)

∴ \triangle BOC \cong \triangle AOD (AAS congruence rule)

 \therefore BO = AO (By CPCT)

 \Rightarrow CD bisects AB.

Question 4: I and m are two parallel lines intersected by another pair of parallel lines p and q (see

the given figure). Show that $\triangle BC \stackrel{\cong}{\triangle}DA$.

Answer:

In △ABC and △CDA,

 $\angle BAC = \angle DCA$ (Alternate interior angles, as p || q)

AC = CA (Common)

 $\angle BCA = \angle DAC$ (Alternate interior angles, as I || m)

∴ △ABC ∴ △CDA (By ASA congruence rule)

Question 5:

Line I : A is the bisector of an angle and B is any point on I. BP and BQ are perpendiculars from B to the arms of A (see the given figure). Show that: i) APB A

 $\triangle AQB$ (ii) BP = BQ or B is equidistant from the arms of \therefore A.

Answer:

In △APB and △AQB,

 $\therefore APB = \therefore AQB (Each 90^{\circ})$

 \therefore PAB = \therefore QAB (I is the angle bisector of \therefore A)

AB = AB (Common)

∴ △APB ∴ △AQB (By AAS congruence rule) ∴

BP = BQ (By CPCT)

rms of ∴A. Or,

it can be said that B is equidistant from the a

Question 6:

In the given figure, AC = AE, AB = AD and $\therefore BAD = \therefore EAC$. Show that BC = DE.

It is given that $\therefore BAD = \therefore EAC$

$$:BAD + :DAC = :EAC + :DAC$$

In ΔBAC and ΔDAE, AB

∴DAE (Proved above)

AC = AE (Given)

∴ ∆BAC ∴ ∆DAE (By SAS congruence rule)

 \therefore BC = DE (By CPCT)

Question 7:

AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\therefore BAD = \therefore ABE$ and $\therefore EPA = \therefore DPB$ (See the given figure). Show that i) $\triangle DAP \therefore \triangle EBP$ (

(ii)
$$AD = BE$$

It is given that ::EPA = :DPB

$$\therefore$$
 \therefore EPA + \therefore DPE = \therefore DPB + \therefore DPE

In \triangle DAP and \triangle EBP,

$$\therefore DAP = \therefore EBP (Given)$$

AP = BP (P is mid-point of AB)

$$\therefore$$
DPA = \therefore EPB (From above)

∴ ∆DAP ∴ ∆EBP (ASA congruence rule)

Question 8:

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see the given figure). Show that: i)

ii) ∴DBC is a right angle. (iii)

Answer:

(i) In ΔAMC and ΔBMD,

```
AM = BM (M is the mid-point of AB)
\thereforeAMC = \thereforeBMD (Vertically opposite angles)
CM = DM (Given)
: ΔAMC : ΔBMD (By SAS congruence rule)
∴ AC = BD (By CPCT) And,
∴ACM = ∴BDM (By CPCT) ii)
ACM = BDM
However, ∴ACM and ∴BDM are alternate interior angles.
Since alternate angles are equal,
It can be said that DB || AC
\therefore \triangle DBC + \triangle ACB = 180^{\circ} (Co-interior angles)
\therefore DBC + 90^{\circ} = 180^{\circ}
∴ ∴DBC = 90°
(iii) In ΔDBC and ΔACB,
DB = AC (Already proved)
\therefore DBC = \therefore ACB (Each 90^\circ)
BC = CB (Common)
∴ △DBC ∴ △ACB (SAS congruence rule) iv)
ΔDBC ∴ ΔACB (
\therefore AB = DC (By CPCT)
∴ AB = 2 CM
\therefore CM = ^{2} AB
```

Exercise 7.2 Question

In an isosceles triangle ABC, with AB = AC, the bisectors of \therefore B and \therefore C intersect each other at O. Join A to O. Show that:

i) OB = OC (ii) AO bisects ∴A (Answer:

(i) It is given that in triangle ABC, AB = AC

 \therefore ACB = \therefore ABC (Angles opposite to equal sides of a triangle are equal)

$$\frac{1}{2} \cdot ACB = \frac{1}{2} \cdot ABC$$

∴ ∴OCB = ∴OBC

 \therefore OB = OC (Sides opposite to equal angles of a triangle are also equal)

(ii) In ΔΟΑΒ and ΔΟΑC,

AO =AO (Common)

AB = AC (Given)

OB = OC (Proved above)

Therefore, △OAB ∴ △OAC (By SSS congruence rule)

 \therefore \therefore BAO = \therefore CAO (CPCT)

∴ AO bisects ∴A.

Question 2:

In \triangle BC, AD is the perpendicular bisector of BC (see the given figure). Show that \triangle BC is an isosceles triangle in which AB = AC.

In △ADC and △ADB,

AD = AD (Common)

 \therefore ADC = \therefore ADB (Each 90°)

CD = BD (AD is the perpendicular bisector of BC)

∴ △ADC ∴ △ADB (By SAS congruence rule)

AB = AC (By CPCT)

Therefore, ABC is an isosceles triangle in which AB = AC.

Question 3:

ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see the given figure). Show that these altitudes are equal.

Answer:

In △AEB and △AFC,

∴AEB and ∴AFC (Each 90°)

A = A (Common angle)

$$AB = AC (Given)$$

$$\therefore$$
 ΔAEB \therefore ΔAFC (By AAS congruence rule) \therefore BE = CF (By CPCT)

Question 4:

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the

given figure). Show that

(i)
$$^{\Delta}_{ABE}$$
 .. $^{\Delta}_{ACF}$

Answer:

(ii) AB = AC, i.e., ABC is an isosceles triangle.

```
(i) In ΔABE and ΔACF,
```

∴ABE and ∴ACF (Each 90°)

A = A (Common angle)

BE = CF (Given)

- ∴ △ABE ∴ △ACF (By AAS congruence rule)
- (ii) It has already been proved that

ΔABE ∴ ΔACF

 \therefore AB = AC (By CPCT)

Question 5:

ABC and DBC are two isosceles triangles on the same base BC (see the given figure).

Show that $\therefore ABD = \therefore ACD$.

Let us join AD.

In $\triangle ABD$ and $\triangle ACD$,

AB = AC (Given)

BD = CD (Given)

AD = AD (Common side)

∴ ΔABD ≅ ΔACD (By SSS congruence rule)

 \therefore \therefore ABD = \therefore ACD (By CPCT)

Question 6:

 \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that \triangle BCD is a right angle.

In △ABC,

AB = AC (Given)

 \therefore ACB = \therefore ABC (Angles opposite to equal sides of a triangle are also equal)

In △ACD,

AC = AD

 \therefore ::ADC = ::ACD (Angles opposite to equal sides of a triangle are also equal)

In ΔBCD,

 \therefore ABC + \therefore BCD + \therefore ADC = 180° (Angle sum property of a triangle)

 \therefore \therefore ACB + \therefore ACB + \therefore ACD + \therefore ACD = 180°

 \therefore \therefore 2(ACB + \therefore ACD) = 180°

 \therefore \therefore 2(BCD) = 180°

∴ ::BCD = 90°

Question 7:

ABC is a right angled triangle in which $\therefore A = 90^{\circ}$ and AB = AC. Find $\therefore B$ and $\therefore C$.

Answer:

It

is given that

$$AB = AC$$

 \therefore $C = \therefore B$ (Angles opposite to equal sides are also equal)

In △ABC,

$$\therefore A + \therefore B + \therefore C = 180^{\circ}$$
 (Angle sum property of a triangle)

$$... 90^{\circ} + ... B + ... C = 180^{\circ}$$

$$... 90^{\circ} + ... B + ... B = 180^{\circ}$$

$$\therefore 2 : B = 90^{\circ}$$

$$\therefore :B = :C = 45^{\circ}$$

Question 8:

Show that the angles of an equilateral triangle are 60° each.

Answer:

Let us consider that ABC is an equilateral triangle.

Therefore, AB = BC = AC

$$AB = AC$$

 \therefore $C = \therefore B$ (Angles opposite to equal sides of a triangle are equal)

Also,

$$AC = BC$$

 \therefore \therefore B = \therefore A (Angles opposite to equal sides of a triangle are equal)

Therefore, we obtain ∴A

In △ABC,

$$\therefore A + \therefore B + \therefore C = 180^{\circ}$$

$$\therefore A + A + A + A = 180^{\circ}$$

 \therefore $\therefore A = \therefore B = \therefore C = 60^{\circ}$ Hence, in an equilateral triangle, all interior angles are of measure 60°.

Exercise 7.3

Question 1:

 \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect

BC at P, show that

i) △ABD ∴ △ACD (ii) △ABP ∴ △ACP

(iii) AP bisects ∴A as well as ∴D. (

(iv) AP is the perpendicular bisector of BC.


```
Answer:
(i) In ΔABD and ΔACD,
AB = AC (Given)
BD = CD (Given)
AD = AD (Common)
∴ △ABD ∴ △ACD (By SSS congruence rule)
\therefore ::BAD = ::CAD (By CPCT)
\therefore \therefore BAP = \thereforeCAP .... (1)
(ii) In ΔABP and ΔACP,
AB = AC (Given)
\thereforeBAP = \thereforeCAP [From equation (1)]
AP = AP (Common)
∴ △ABP ∴ △ACP (By SAS congruence rule)
\therefore BP = CP (By CPCT) ... (2)
(iii) From equation (1),
:BAP = :CAP
Hence, AP bisects ∴A.
In \triangle BDP and \triangle CDP,
BD = CD (Given)
DP = DP (Common)
BP = CP [From equation (2)]
.: ΔBDP :: ΔCDP (By S.S.S. Congruence rule)
∴ ∴BDP = ∴CDP (By CPCT) ... (3) Hence,
AP bisects ∴D. iv) △BDP ∴
```

ΔCDP (

$$\therefore$$
 ::BPD = ::CPD (By CPCT) (4)

∴ BPD + ∴ CPD =
$$^{\circ}$$
 180 (Linear pair angles)

$$\therefore BPD + \therefore BPD = 180$$

∴BPD 2 =
$$180$$
 [From equation (4)]

$$BPD = 90 ... (5)$$

From equations (2) and (5), it can be said that AP is the perpendicular bisector of BC.

Question 2:

AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that

i) AD bisects BC (ii) AD bisects :: A. (

Answer:

(i) In ΔBAD and ΔCAD,

 \therefore ADB = \therefore ADC (Each 90° as AD is an altitude)

AB = AC (Given)

AD = AD (Common)

∴ ΔBAD ∴ ΔCAD (By RHS Congruence rule)

 \therefore BD = CD (By CPCT)

Hence, AD bisects BC.

(ii) Also, by CPCT,

 $\therefore BAD = \therefore CAD$ Hence,

AD bisects ∴A.

Question 3:

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of \(\Delta \text{QR} \) (see the given figure). Show that: i) \(\Delta \text{BM} \)

∴ ΔPQN (ii) ΔABC ∴ ΔPQR (

Answer:

(i) In ΔABC, AM is the median to BC.

$$\therefore BM = \frac{1}{2}BC$$

$$\therefore QN = \frac{1}{2}QR$$

However, BC = QR

$$\therefore \frac{1}{2}_{BC} = \frac{1}{2}_{QR}$$

$$\therefore$$
 BM = QN ... (1)

In △ABM and △PQN,

In Δ PQR, PN is the median to QR.

AB = PQ (Given)

BM = QN [From equation (1)]

AM = PN (Given)

∴ ΔABM ∴ ΔPQN (SSS congruence rule)

 $\therefore ABM = \therefore PQN (By CPCT)$

 $\therefore ABC = \therefore PQR \dots (2)$

(ii) In ΔABC and ΔPQR,

AB = PQ (Given)

 $\therefore ABC = \therefore PQR [From equation (2)]$

BC = QR (Given)

∴ △ABC ∴ △PQR (By SAS congruence rule)

Question 4:

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Answer:

In ∆BEC and ∆CFB,

 \therefore BEC = \therefore CFB (Each 90°)

BC = CB (Common)

BE = CF (Given)

∴ ΔBEC ∴ ΔCFB (By RHS congruency)

 \therefore \therefore BCE = \therefore CBF (By CPCT)

 \therefore AB = AC (Sides opposite to equal angles of a triangle are equal)

Hence, △ABC is isosceles.

Question 5:

ABC is an isosceles triangle with AB = AC. Drawn AP \therefore BC to show that \therefore B = \therefore C.

Answer:

In △APB and △APC,

 $\therefore APB = \therefore APC (Each 90^{\circ})$

AB = AC (Given)

AP = AP (Common)

∴ ДАРВ ∴ ДАРС (Using RHS congruence rule)

 $\therefore : B = : C$ (By using CPCT)

Exercise 7.4 Question

1:

Show that in a right angled triangle, the hypotenuse is the longest side.

Answer:

Let us consider a right-angled triangle ABC, right-angled at B.

In ∆ABC,

$$\therefore A + \therefore B + \therefore C = 180^{\circ}$$
 (Angle sum property of a triangle)

$$\therefore A + 90^{\circ} + \therefore C = 180^{\circ}$$

$$\therefore A + \therefore C = 90^{\circ}$$

Hence, the other two angles have to be acute (i.e., less than 90°).

∴ ∴ B is the largest angle in \triangle BC.

$$\therefore B > A \text{ and } B > C$$

[In any triangle, the side opposite to the larger (greater) angle is longer.] Therefore, AC is the largest side in \triangle BC.

However, AC is the hypotenuse of ΔABC. Therefore, hypotenuse is the longest side in a right-angled triangle.

Question 2:

In the given figure sides AB and AC of \triangle BC are extended to points P and Q respectively. Also, \therefore PBC < \therefore QCB. Show that AC > AB.

Answer:

In the given figure,

$$\therefore$$
ABC + \therefore PBC = 180° (Linear pair)

$$\therefore$$
 ::ABC = 180° - ::PBC ... (1)

Also,

$$\therefore$$
ACB + \therefore QCB = 180°

$$\therefore ACB = 180^{\circ} - \therefore QCB \dots (2)$$

 \therefore 180° - \therefore PBC > 180° - \therefore QCB

 \therefore :ABC > ::ACB [From equations (1) and (2)] \therefore AC >

AB (Side opposite to the larger angle is larger.)

Question 3:

In the given figure, :B < :A and :C < :D. Show that AD < BC.

Answer:

In △AOB,

 \therefore B < \therefore A \therefore AO < BO (Side opposite to smaller angle is smaller) ... (1)

In ∆COD,

∴C < ∴D

 \therefore OD < OC (Side opposite to smaller angle is smaller) ... (2)

On adding equations (1) and (2), we obtain

AO + OD < BO + OC

AD < BC

Question 4:

AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD see the given figure). Show that :A > :C and :B > (:D.

Let us join AC. In ∆ABC,

AB < BC (AB is the smallest side of quadrilateral ABCD)

 \therefore .:2 < .:1 (Angle opposite to the smaller side is smaller) ... (1)

In △ADC,

AD < CD (CD is the largest side of quadrilateral ABCD)

... .:4 < .:3 (Angle opposite to the smaller side is smaller) ... (2)

On adding equations (1) and (2), we obtain

$$\therefore 2 + \therefore 4 < \therefore 1 + \therefore 3 \therefore$$

 $\therefore :A > :C$ Let us join BD.

In △ABD,

AB < AD (AB is the smallest side of quadrilateral ABCD)

 \therefore :8 < :5 (Angle opposite to the smaller side is smaller) ... (3)

In ∆BDC,

BC < CD (CD is the largest side of quadrilateral ABCD)

 \therefore ...7 < ...6 (Angle opposite to the smaller side is smaller) ... (4)

On adding equations (3) and (4), we obtain

$$.8 + ..7 < ..5 + ..6$$

$$\therefore :D < :B$$

$$\therefore : B > : D$$
 Question

5:

In the given figure, PR > PQ and PS bisects \therefore QPR. Prove that \therefore PSR > \therefore PSQ.

As PR > PQ,

 \therefore ∴PQR > ∴PRQ (Angle opposite to larger side is larger) ... (1) PS

is the bisector of $\therefore QPR$.

$$\therefore : QPS = : RPS ... (2)$$

:PSR is the exterior angle of ΔPQS.

$$\therefore$$
 :PSR = :PQR + :QPS ... (3)

∴PSQ is the exterior angle of \triangle PRS.

$$\therefore$$
 PSQ = \therefore PRQ + \therefore RPS ... (4)

Adding equations (1) and (2), we obtain

$$\therefore PQR + \therefore QPS > \therefore PRQ + \therefore RPS$$

 \therefore :PSR > :PSQ [Using the values of equations (3) and (4)]

Question 6:

Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Let us take a line I and from point P (i.e., not on line I), draw two line segments PN and PM. Let PN be perpendicular to line I and PM is drawn at some other angle.

In ∆PNM,

∴N = 90°

 $\therefore P + \therefore N + \therefore M = 180^{\circ}$ (Angle sum property of a triangle)

 $:P + :M = 90^{\circ}$

Clearly, ∴M is an acute angle.

∴ ∴M < ∴N

∴ PN < PM (Side opposite to the smaller angle is smaller)

Similarly, by drawing different line segments from P to I, it can be proved that PN is smaller in comparison to them.

Therefore, it can be observed that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Exercise 7.5 Question

1:

ABC is a triangle. Locate a point in the interior of \triangle BC which is equidistant from all the vertices of \triangle BC.

Answer:

Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.

In \triangle BC, we can find the circumcentre by drawing the perpendicular bisectors of sides AB, BC, and CA of this triangle. O is the point where these bisectors are meeting together. Therefore, O is the point which is equidistant from all the vertices of \triangle BC.

Question 2:

In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Answer:

The point which is equidistant from all the sides of a triangle is called the incentre of the triangle. Incentre of a triangle is the intersection point of the angle bisectors of the

interior angles of that triangle.

Here, in $\triangle BC$, we can find the incentre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of $\triangle BC$.

Question 3:

In a huge park people are concentrated at three points (see the given figure)

B• .

A: where there are different slides and swings for children,

B: near which a man-made lake is situated,

C: which is near to a large parking and exit.

Where should an ice-cream parlour be set up so that maximum number of persons can approach it?

(Hint: The parlor should be equidistant from A, B and C) Answer:

Maximum number of persons can approach the ice-cream parlour if it is equidistant from A, B and C. Now, A, B and C form a triangle. In a triangle, the circumcentre is the only point that is equidistant from its vertices. So, the ice-cream parlour should be set

up at the circumcentre O of △ABC.

In this situation, maximum number of persons can approach it. We can find

circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.

Question 4:

Complete the hexagonal and star shaped rangolies (see the given figures) by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Answer:

It can be observed that hexagonal-shaped rangoli has 6 equilateral triangles in it.

$$= \frac{\sqrt{3}}{4} (\text{side})^2 = \frac{\sqrt{3}}{4} (5)^2$$
Area of $\triangle OAB$

$$=\frac{\sqrt{3}}{4}(25)=\frac{25\sqrt{3}}{4} \text{ cm}^2$$

$$=6 \times \frac{25\sqrt{3}}{4} = \frac{75\sqrt{3}}{2} \text{ cm}^2$$

 $= 6 \times \frac{25\sqrt{3}}{4} = \frac{75\sqrt{3}}{2} \text{ cm}^2$ Area of hexagonal-shaped rangoli Area of equilateral triangle having its side as 1 cm = $\frac{\sqrt{3}}{4}(1)^2 = \frac{\sqrt{3}}{4}$ cm²

Number of equilateral triangles of 1 cm side that can be filled

in this hexagonal-shaped
$$rangoli = \frac{75\sqrt{3}}{\frac{2}{\sqrt{3}}} = 150$$

Star-shaped rangoli has 12 equilateral triangles of side 5 cm in it.

Area of star-shaped rangoli =
$$12 \times \frac{\sqrt{3}}{4} \times (5)^2 = 75\sqrt{3}$$

Number of equilateral triangles of 1 cm side that can be filled

in this star-shaped
$$rangoli = \frac{75\sqrt{3}}{\frac{\sqrt{3}}{4}} = 300$$

Therefore, star-shaped rangoli has more equilateral triangles in it.