

Class: XII Subject: Maths Topic: Application of Derivative No. of Questions: 28

- 1. The point M (x, y) of the graph of the function $y = e^{-|x|}$ so that area bounded by the tangent at M and the coordinate axes is greatest is
 - A. (1, e⁻¹)
 - B. (2, e⁻²) C. (- 2, e²)
 - D. (0, 1)
- 2. The number of inflection points of a function given by a third degree polynomial is exactly
 - A. 2
 - B. 1
 - C. 3
 - D. 0
- 3. If the tangent at (1, 1) on $y^2 = x (2 x)^2$ meets the curve again at P, then P is
 - A. (-4, 4)
 - B. (-1,2)
 - C. (9/4, 3/8)
 - D. None of these

2х

- 4. Let $f(x) = 2 \tan^{-1} x + \sin^{-1} \frac{1 + x^2}{x^2}$ then
 - A. max $f(x) = \pi/2$
 - B. min $f(x) = \pi/4$
 - C. $\max_{x} f(x) = \pi$
 - D. none of thee

- 5. The abscissa of the point on the curve $9y^2 = x^3$, the normal at which cuts off equal intercepts on the coordinate axes is
 - A. 2
 - B. -4
 - C. 4
 - D. 2
- 6. If the normal to the curve $x^3 = y^2$ at the point $(m^2, -m^3)$ is $y = mx 2m^3$, then the value of m^2 is
 - A. 1
 - B. 1/2
 - C. 1/3
 - D. 2/3
- 7. If the curves $y^2 = 6x$, $9x^2 + by^2 = 16$, cut each other at right angles then the value of b is
 - A. 2
 - B. 4
 - C. 9/2
 - D. None of these
- 8. The tangent to the curve $y = e^x$ drawn at the point (c, e^c) intersects the line joining the points (c 1, e^c 1) and (c + 1, e^{c+1})
 - A. on the left of x = c
 - B. on the right of x = c
 - C. at no point
 - D. at all points
- 9. On the interval [0, 1] the function $x^{25} (1 x)^{75}$ takes its maximum value at the point
 - A. 0
 - B. 1/3
 - C. 1/2
 - D. ¼

- 10. A curve passes through the point (2, 0) and the slope of the tangent at any point (x, y) is $x^2 2x$ for all value of x. The point of maximum ordinate on the curve is
 - A. (0, 4/3)
 - B. (0, 2/3)
 - C. (1, 2/3)
 - D. (2, 4/3)

11. If $f(x) = x e^{x(1-x)}$, then f(x) is

- A. increasing on [-1/2, 1]
- B. decreasing on R
- C. increasing on R
- D. decreasing on [-1/2, 1]
- 12. An equation of the circle that is tangent to $y = x^3$ at (1, 1) and has the same second derivative there, is
 - A. $x^2 + y^2 + 24x 28y + 2 = 0$
 - B. $2(x^2 + y^2) + 12x 8y 8 = 0$
 - C. $3(x^2 + y^2) 24x + 10y + 8 = 0$
 - D. None of these

13. If f and g are defined on $[0, \infty)$ by $f(x) = \lim_{n \to \infty} \frac{x^{n} - 1}{x^{n} + 1}$ and $g(x) = \int_{0}^{x} f(t) dt$. Then

- A. g has local maximum at x = 1
- B. g has local minimum at x = 1
- C. g is an increasing function on $(0, \infty)$
- D. g is a decreasing function on $(0, \infty)$

14. If the tangent to the curve $2y^3 = ax^2 + x^3$ at the point (a, a) cuts off intercepts a and b on the coordinate axes, where $\alpha^2 + \beta^2 = 61$ then the value of |a| is

- A. 16
- B. 28
- C. 30
- D. 31

Transweb Educational Services Pvt Ltd

147, Sector -6 Noida, UP - 201301, <u>www.askiitians.com</u> Email: info@askiitians.com Tel: 1800-2000-838

- 15. Let x, $p \in R$, x + 1 > 0, p $\neq 0, 1$. Then
 - A. $(1 + x)^p > 1 + px$ for p > 0
 - B. $(1 + x)^p > 1 + px$ for $p \in (-\infty, 0) \cup (1, \infty)$
 - C. $(1 + x)^p > 1 + px$ for 0
 - D. $(1 + x)^p < 1 + px$ for 0

16. Let $f(x) = \sin x + \cos x$ then

- A. $x = 17^{\pi}/4$ is a point of minima
- B. $x = 13^{\pi}/4$ is a point of maxima
- C. $x = 21^{\pi}/4$ is a point of minima
- D. $x = 29^{\pi}/4$ is a point of maxima

17. Let $g(x) = (\log (1 + x))^{-1} - x^{-1}, x > 0$ then

- A. 1 < g(x) < 2
- B. -1 < g(x) < 0
- C. 0 < g(x) < 1
- D. None of these

18. Let $f(x) = 2 \sin x + \cos 2x$ ($0 \le x \le 2^{\pi}$) and $g(x) = x + \cos x$ then

- A. g is a decreasing function
- B. f increase on $(0, \pi/2)$
- C. f increases on $(0, \pi/6) \cup (\pi/2, 5\pi/6)$
- D. f decreases on $(0, \pi/2)$
- 19. The maximum and minimum value of $f(x) = ab \sin x + b \sqrt{1-a^2} \cos x + c$ lie in the interval (assuming |a| < 1, b > 0)
 - A. [b c, b + c]
 - B. (b c, b + c)
 - C. [c b, b + c]
 - D. none of these

- 20. The coordinates of the point on the parabola $y^2 = 8x$, which is at minimum distance from the circle $x^2 + (y + 6)^2 = 1$ are
 - A. (2, -4)
 - B. (18, 12)
 - C. (2, 4)
 - D. None of these
- 21. Find the intervals in which the function $f(x) = \sin X + \cos x$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing. [Hots; Foreign 2011; All India 2009]

22. Find the intervals in which the function $f(x) = (x-1) (x-2)^2$ is increasing or decreasing. [Delhi 2009C]

- 23. Find the intervals in which the following function
 - $f(x) = 20 9x + 6x^2 x^3$ is
 - (i) Strictly increasing.
 - (ii) Strictly decreasing.

[All India 2010]

24. Find the equation of tangent to the curve $x_2 + 3y = 3$, which is parallel to line y - 4x + 5 = 0. [Delhi 2009]

- 25. Find the equations of tangents to the curve $3x^2 y^2 = 8$, which passes through the *Point* $(\frac{4}{3}, 0)$.
- 26. An open box with a square base is to be mad out of a given quantity of cardboard of area C² sq units. Show that the maximum volume of box is $\frac{C^3}{6\sqrt{3}}$ cu nits. [All India 2012]
- 27. A manufacturer can self x items at a price of Rs. $\left(5 - \frac{x}{100}\right)$ each. The cost price of x items is Rs. $\left(\frac{x}{5} + 500\right)$. Find the number of items he should sell to each maximum profit.

28. If the sum of the lengths of the hypotenuse and a side of a right angled triangle is given, show that the area of the triangle is maximum when the angle between them is $\pi/3$. [Hots; All India 2009]