

CHEMISTRY

- **1.** If the shortest wavelength in Lyman series of hydrogen atom is A, then the longest wavelength in Paschen series of He⁺ is :
 - (1) $\frac{5A}{9}$
- (2) $\frac{36A}{7}$
- (3) $\frac{36A}{5}$

(4) $\frac{9A}{5}$

Sol. 2

Shortest wavelength is corresponding to best ine

∴
$$n_L = 1$$
 (Lyman series)
 $n_H = \infty$ (infinite)

$$\frac{1}{A} = r \times (1)^2 \left\{ \frac{1}{12} - \frac{1}{2} \right\} = R$$

Longest wavelength $\equiv 1^{st}$ Line

$$n_{\text{\tiny L}} = 4$$

$$\frac{1}{\lambda} = r \times (2)^2 \left\{ \frac{1}{2} - \frac{1}{2} \right\} = \frac{r \times 7}{36}$$

$$\lambda = \frac{36A}{7}$$

- 2. Among the following, the essential amino acid is:
 - (1) Valine
- (2) Alanine
- (3) Serine

(4) Aspartic acid

Sol. 1

- 3. Identify the pollutant gases largely responsible for the discoloured and lustreless nature of marble of the Taj Mahal.
 - (1) SO_2 and O_3
- (2) O_3 and CO_2
- (3) SO₂ and NO₂
- (4) CO₂ and NO₂

Sol. 3 SO₂ and NO₂

4. Which of the following compounds will not undergo Friedel Craft's reaction with benzene?

Sol. 1

Formation of carbocation is not possible in case of $CH_2 = CHCI$

- **5.** Which of the following is paramagnetic?
 - (1) CO
- (2) NO+
- (3) O_2^{2-}

(4) B_{2}

Sol. 4

No of e-

$$NO^{+} = 14$$

$$CO = 14$$
, $O_2^{2-} = 18$

$$B_2 = 10$$

According to MOT

B, is paramagnetic

- **6.** The rate of a reaction A doubles on increasing the temperature from 300 to 310 K. By how much, the temperature of reaction B should be increased from 300 K so that rate doubles if activation energy of the reaction B is twice to that of reaction A.
 - (1) 4.92 K
- (2) 9.84 K
- (3) 19.67 K
- (4) 2.45 K

Sol.

$$2 = \frac{Eq}{R} \left\{ \frac{1}{300} - \frac{1}{310} \right\}$$
 ...(i)

$$2 = e^2 \frac{Ea}{R} \left\{ \frac{1}{300} - \frac{1}{T} \right\}$$
 ...(ii)

$$\frac{2Ea}{R} \left\{ \frac{1}{300} - \frac{1}{T} \right\} = \frac{E_a}{R} \left\{ \frac{1}{300} - \frac{1}{310} \right\}$$

$$\frac{1}{300} + \frac{1}{310} = \frac{2}{T} \Rightarrow T = \frac{300 \times 310}{610} \times 2$$

= 304.92

- **7.** A solution containing a group-IV cation gives a precipitate on passing, H₂S. A solution of this precipitate in dil. HCl produces a white precipitate with NaOH solution and bluish-white prcipitate with basic potassium ferrocyanide. The cation is :
 - (1) Mn²⁺
- (2) Zn^{2+}
- (3) Ni^{2+}
- $(4) Co^{2+}$

Sol. 2

ZnS
$$\xrightarrow{\text{HCI}}$$
 ZnCl₂ $\xrightarrow{\text{NaOH}}$ Zn(OH)₂
$$\downarrow k_4[\text{Fe}(\text{CN})_6]$$
 Zn₂[Fe(CN)₆]

- **8.** Which of the following statements is not true about partition chromatography?
 - (1) Stationary phase is a finely divided solid adsorbent
 - (2) Separation depends upon equilibration of solute between a mobile and a stationary phase
 - (3) Paper chromatography is an example of partition chromatography
 - (4) Mobile phase can be a gas
- Sol. 4
- **9.** Excess of NaOH (aq) was added to 100 mL of FeCl₃ (aq) resulting into 2.14 g of Fe(OH)₃. The molarity of FeCl₂(aq) is :

(Given molar mass of Fe = 56 g mol⁻¹ and molar mass of Cl = 35.5 g mol⁻¹)

- (1) 0.3 M
- (2) 0.2 M
- (3) 0.6 M
- (4) 1.8 M

Sol. 2

3NaOH +
$$FeCl_3 \rightarrow Fe (CH)_3 + NaCl$$

100 ml 2.14 gm
 $m = ?$

Moles of Fe(CH₃) =
$$\frac{2.14}{107}$$
 = 2 × 10⁻² mol

moles $FeCl_3 = 2 \times 10^{-2}$ mol

$$M = \frac{2 \times 10^{-2}}{100} \times 1000 = 0.2 \text{ M}$$

5 g of Na₂SO₄ was dissolved in x g of H₂O. The change in freezing point was found to be 3.82°C. If Na₂SO₄ is 81.5% ionised, the value of x

 $(K_{\rm f} \text{ for water} = 1.86^{\circ}\text{C kg mol}^{-1}) \text{ is approximately}:$

(molar mass of S = 32 g mol^{-1} and that of Na = 23 g mol^{-1})

- (1) 25 g
- (2) 65 g
- (3) 15 g
- (4) 45 g

Sol. 4

$$Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$$

$$x = 1 + (3 - 1) \cdot 0.815 = 2.63$$

$$3.82 = 1.86 \times 2.63 \times \frac{5 \times 1000}{142 \times x}$$

$$\therefore x = \frac{1.86 \times 2.63 \times 5000}{142 \times 3.82}$$

= 45 gm

11. Consider the following standard electrode potentials (E° in volts) in aqueous solution :

<u>Element</u>
ΔΙ

 $\frac{M^{3+}/M}{-1.66}$

 $\frac{M^{+}/M}{+ 0.55}$

ΤI

+ 1.26

-0.34

Based on these data, which of the following statements is correct?

- (1) $T\ell^{3+}$ is more stable than $A\ell^{3+}$
- (2) $A\ell^+$ is more stable than $A\ell^{3+}$ (4) $T\ell^+$ is more stable than $A\ell^+$
- (3) $T\ell^{3+}$ is more stable than $A\ell^{3+}$
- Sol. 4

 ΔG is -ve

12. The major product expected from the following reaction is :

Sol. 3

- **13.** Among the following, the incorrect statement is :
 - (1) At low pressure, real gases show ideal behaviour.
 - (2) At very low temperature, real gases show ideal behaviour.
 - (3) At Boyle's temperature, real gases show idela behaviour.
 - (4) At very large volume, real gases show ideal behaviour.
- Sol. 2
- 14. The pair of compounds having metals in their highest oxidation state is:
 - (1) MnO₂ and CrO₂Cl₂
- (2) $[Fe(CN)_{4}]^{3-}$ and $[Cu(CN)_{4}]^{2-}$
- (3) $[NiCl_{\lambda}]^{2-}$ and $[CoCl_{\lambda}]^{2-}$
- (4) [FeCl₄] and Co₂O₃

Sol. 1

$$MnO_2 = + 4$$

$$CrO_2CI_2 = + 6$$

15. The IUPAC name of the following compound is

- (1) 2-Ethyl-1, 1-dimethylcyclohexane
- (2) 1, 1-Dimethyl 1-2-ethylcyclohexane
- (3) 2, 2-Dimethyl-1-1-ethylcyclohexane
- (4) 1-Ethyl-2,2-dimethylcyclohexane
- Sol. 1

16. A mixture containing the following four compounds is extracted with 1 M HCI. The compound that goes to aqueous layer is :

- (1) IV
- (2) 11

- (3) I
- (4) 111

17. Consider the following ionization enthalpies of two elements 'A' and 'B'.

Element	Ionization enthalpy (kJ/mol)		
	1 st	2 nd	3 rd
Α	899	1757	14847
В	737	1450	7731

Which of the following statements is correct?

- (1) Both 'A' and 'B' belong to group-1 where 'A' comes below 'B'.
- (2) Both 'A' and 'B' belong to group-2 where 'A' comes below 'B'.
- (3) Both 'A' and 'B' belong to group-1 where 'B' comes below 'A'.
- (4) Both 'A' and 'B' belong to group-2 where 'B' comes below 'A'.

Sol. 4

- **18.** sp³d² hybridization is not displayed by :
 - (1) SF₆
- (2) BrF₅
- (3) PF₅
- (4) [CrF₆]³⁻

Sol. 3

 $SF_6 = Sp^3d^2$

 $BrF_5 = SP^3d^2$

 $[CrF_{4}]^{3-} = sp^{3}d^{2}$

 $PFs = sp^3d$

- **19.** The number of S = O and S-OH bonds present in peroxodisulphuric acid and pyrosulphuric acid respectively are :
 - (1) (2 and 4) and (2 and 4)
- (2) (4 and 2) and (4 and 2)
- (3) (4 and 2) and (2 and 4)
- (4) (2 and 2) and (2 and 2)

Sol. 2

Peroxodisulphuric acid

$$H_2S_2O_8$$

Pyrosulphuric acid

H₂S₂O₇ :

- **20.** Among the following, correct statement is :
 - (1) Sols of metal sulphides are lyophilic.
 - (2) Brownian movement is more pronounced for smaller particles than for bigger-particles
 - (3) One would expect charcoal to adsorb chlorine more than hydrogen sulphide.
 - (4) Hardy Schulze law states that bigger the size of the ion is, the greater is its coagulating power.

The major product of the following reaction is : 21.

$$C_{6}H_{5}CH_{2} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{C_{2}H_{5}ONa} \xrightarrow{C_{2}H_{5}OH}$$
Br

(1)
$$C_6H_5CH = C - CH_2CH_3$$

 I
 CH_3

(2)
$$C_6H_5CH_2 - C = CHCH_3$$

 I
 CH_3

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{(3)} \ \mathsf{C_6H_5CH_2-C} - \mathsf{C-CH_2CH_3} \\ \mathsf{I} \\ \mathsf{OC_2H_5} \end{array}$$

(4)
$$C_6H_5CH_2-C=CH_2$$

 I
 CH_2CH_3

Sol.

What is the standard reduction potential (E°) for $Fe^{3+} \rightarrow Fe$? 22. Given that:

$$Fe^{\scriptscriptstyle 2+} \ + \ 2e^- \rightarrow Fe; \ E^\circ_{\ Fe^{\scriptscriptstyle 2+}/Fe} = -0.47 \, V$$

Fe³⁺ + e⁻
$$\rightarrow$$
 Fe²⁺; E°_{Fe³⁺/Fe²⁺} = +0.77 V
(1) -0.057 V (2) + 0.30 V

$$(2) + 0.30 \text{ V}$$

$$(3) - 0.30 \text{ V}$$

$$(3) - 0.30 \text{ V}$$
 $(4) + 0.057 \text{ V}$

Sol.

- The reason for "drug induced poisoning" is : 23.
 - (1) Binding irreversibly to the active site of the enzyme
 - (2) Binding at the allosteric sites of the enzyme
 - (3) Binding reversibly at the active site of the enzyme
 - (4) Bringing conformational change in the binding site of enzyme

Sol. 2

24. The major product of the following reaction is :

Sol. 1

$$\begin{array}{c}
OH \\
OH
\end{array}$$

$$\begin{array}{c}
O^{-} \\
OH
\end{array}$$

$$\begin{array}{c}
O^{-} \\
OH
\end{array}$$

$$\begin{array}{c}
OCH_{3} \\
OH
\end{array}$$

25. The major product of the following reaction is :

$$\begin{array}{c|c} \mathsf{CH_3CHCH_2CHCH_2CH_3} & \xrightarrow[\mathsf{heat}]{} \mathsf{KOH, CH_3OH} \\ \mathsf{Br} & \mathsf{Br} & \xrightarrow[\mathsf{heat}]{} \end{array}$$

- (1) $CH_3CH = CH CH = CHCH_3$
- (2) $CH_2 = CHCH = CHCH_2CH_3$
- (3) $CH_3CH = C = CHCH_2CH_3$
- (4) $CH_2 = CHCH_2CH = CHCH_3$

Sol. 1

$$CH_3-CH-CH_2-CH-CH_2-CH_3$$

$$Br$$

$$Br$$

$$E_2 reaction$$

$$CH_3-CH=CH-CH=CH-CH_3$$

$$(6 \ \alpha H)$$

- 26. In which of the following reactions, hydrogen peroxide acts as an oxidizing agent?
 - (1) HOCI + $H_2O_2 \rightarrow H_3O^+ + CI^- + O_2$
 - (2) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$
 - (3) PbS + $4H_2O_2 \rightarrow PbSO_4 + 4H_2O$
 - (4) $2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$

Sol. 3 $PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O$ +2 + 4

27. For a reaction, $A(g) \rightarrow A(\ell)$; $\Delta H = -3RT$.

The correct statement for the reaction is:

(1) $\Delta H = \Delta U = 0$

(2) $|\Delta H| < |\Delta U|$

(3) $|\Delta H| > |\Delta U|$

(4) $\Delta H = \Delta U \neq 0$

28. The enthalpy change on freezing of 1 mol of water at 5°C to ice at -5°C is :

(Given $\Delta_{fus} H = 6 \text{ kJ mol}^{-1} \text{ at } 0^{\circ}\text{C}$,

 $C_p(H_2O, \ell) = 75.3 \text{ J mol}^{-1} \text{ K}^{-1},$

 $C_p (H_2O, s) = 36.8 \text{ J mol}^{-1} \text{ K}^{-1})$

(1) 6.00 kJ mol⁻¹

(2) 5.81 kJ mol⁻¹

(3) 5.44 kJ mol⁻¹

(4) 6.56 kJ mol⁻¹

- Sol. D
- **29.** Addition of sodium hydroxide solution to a weak acid (HA) results in a buffer of pH 6. If ionisation constant of HA is 10⁻⁵, the ratio of salt to acid concentration in the buffer solution will be :
 - (1) 10 : 1
- (2) 4:5
- (3) 5:4
- (4) 1:10

- Sol. 1
- **30.** A metal 'M' reacts with nitrogen gas to afford ' M_3N '. ' M_3N ' on heating at high temperature gives back 'M' and on reaction with water produces a gas 'B'. Gas 'B' reacts with aqueous solution of $CuSO_4$ to form a deep blue compound. 'M' and 'B' respectively are :
 - (1) Li and NH₃
- (2) Na and NH₃
- (3) Ba and N₂
- (4) Al and N₂

