Problems and Solutions: INMO-2015

1. Let ABC be a right-angled triangle with ZB = 90°. Let BD be the
altitude from B on to AC. Let P, ) and I be the incentres of triangles
ABD, CBD and ABC respectively. Show that the circumcentre of of
the triangle PIQ lies on the hypotenuse AC.

Solution: We begin with the following lemma:

Lemma: Let XY 7 be a triangle with /XY Z = 90 + «. Construct an
isosceles triangle X FZ, externally on the side X7, with base angle
a. Then F is the circumcentre of AXY Z.

Proof of the Lemma: Draw £D |
XZ. Then DF is the perpendicu-
lar bisector of X 7. We also observe
that /XED = /ZFED = 90 — a. Ob-
serve that F is on the perpendicu-
lar bisector of XZ. Construct the
circumcircle of XY 7. Draw per-
pendicular bisector of XY and let
it meet DE in F. Then F is the
circumcentre of AXY 7. Join XF.
Then /X FD = 90— «. But we know
that /ZXFED =90 — «. Hence E = F.
Let r, ro and r be the inradii of the triangles ABD, CBD and ABC
respectively. Join PD and D(@. Observe that ZPD(@ = 90°. Hence

PQ? = PD? + DQ* = 2r? 4 2r2.
Let sy = (AB + BD + DA)/2. Observe that BD = ca/b and AD =

VAB? — BD? = \/c% — (%)2 = ¢*/b. This gives s; = cs/b. But r; =
sy —c=(¢/b)(s — b) = cr/b. Similarly, ry = ar/b. Hence

2 2
PQ* = 2r? <C ;a ) = 272

Consider APIQ. Observe that

/ZPIQ =90+ (B/2) = 135. Hence PQ A
subtends 90° on the circumference
of the circumcircle of API(Q. But P K
we have seen that ZPD(Q = 90°.
Now construct a circle with P(Q as
diameter. Let it cut AC again in K.
It follows that ZPK (@ = 90° and the
points P, D, K, () are concyclic. We Page

also notice /KPQ = /KDQ = 45° B
and /PQK = /PDA = 45°.



Thus PK(Q is an isosceles right-angled triangle with K P = K. Ther-
fore KP?+ KQ? = PQ? = 2r? and hence KP = KQ =r.

Now ZPIQ = 90 + 45 and ZPK(Q@Q = 2 x 45° = 90° with KP = KQ = r.
Hence K is the circumcentre of APIQ).

(Incidentally, This also shows that K/ = r and hence K is the point
of contact of the incircle of AABC with AC.)

Solution 2: Here we use compu-
tation to prove that the point of
contact K of the incircle with AC b

is the circumcentre of API(Q). We P K
show that KP = KQ = r. Let nr
and r, be the inradii of triangles
ABD and CBD respectively. Draw !

Q
PL 1 AC and QM L AC. 1If s; is
the semiperimeter of AABD, then
AL = s, — BD. B
But AB+ BD + DA 2
51 = +2+ : BD:%, AD:%

Hence s; = ¢s/b. This gives r; = sy —c=cr/b, AL = s1— BD = ¢(s—a)/b.
Hence KL = AK — AL = (s—a) — C(sb_ ) — (b_c)b(s_“). We observe that

—b)? 2+ a® + b* — 2bc — 2ab + 2
2r? = (c+a2 ) _crat 5 ¢~ 2ab e = (b*—ba—bctac) = (b—c)(b—a).

This gives

(s—a)b—c)=(s—b+b—a)b—c)=r(b—c)+(b—a)(b—rc)
=r(b—c)+2*=r(b—c+c+a—>b)=ra

Thus KL = ra/b. Finally,

2.2 2 2
9 9 o T7Q re4ct
KP*=KL*+ LP* = 7 + I
Thus KP = r. Similarly, K@) = r. This gives KP = KI = K@) =r and
therefore K is the circumcentre of AKIQ.

(Incidentally, this also shows that KL = ca/b =1, and KM = ry.)

. For any natural number n > 1, write the infinite decimal expansion
of 1/n (for example, we write 1/2 = 0.49 as its infinite decimal expan-
sion, not 0.5). Determine the length of the non-periodic part of the
(infinite) decimal expansion of 1/n.

Solution: For any prime p, let v,(n) be the maximum power ol}age 20f6
dividing n; ie p*»(™ divides n but not higher power. Let r be the



length of the non-periodic part of the infinite decimal expansion of
1/n.
Write
L 0amas ol B
n
We show that r = max(v(n), vs(n)).
Let a and b be the numbers ajas---a, and b = b;b, - - - bs respectively.
(Here a; and b; can be both 0.) Then

11 b 1 b
n o 107 <a+;(1os)k> —1—W<a+ 108—1)'

Thus we get 10"(10° — 1) = n((10° — 1)a + b). It shows that r >
max(ve(n), vs(n)). Suppose r > max(ve(n), vs(n)). Then 10 divides b — a.
Hence the last digits of « and b are equal: a, = b;. This means

- = O.a1a2 s ar_lbsble tee bs—l-
n

This contradicts the definition of r. Therefore r = max(vy(n), v5(n)).

. Find all real functions f from R — R satisfying the relation

f@®+yf(z) =zf(z +y).

Solution: Put z = 0 and we get f(y/f(0)) = 0. If f(0) # 0, then yf(0)
takes all real values when y varies over real line. We get f(z) = 0.
Suppose f(0) = 0. Taking y = —z, we get f(2*> — zf(z)) = 0 for all real
Z.

Suppose there exists zy # 0 in R such that f(zy) = 0. Putting = = x,
in the given relation we get

f(x3) = zof (w0 +y),

for all y € R. Now the left side is a constant and hence it follows
that f is a constant function. But the only constant function which
satisfies the equation is identically zero function, which is already
obtained. Hence we may consider the case where f(z) # 0 for all
x # 0.

Since f(2* — zf(z)) = 0, we conclude that 2? — zf(z) = 0 for all z # 0.
This implies that f(z) = x for all « # 0. Since f(0) = 0, we conclude
that f(z) =« for all z € R.

Thus we have two functions: f(z) =0 and f(x) =z for all z € R.

. There are four basket-ball players A, B,C,D. Initially, the ball is

with A. The ball is always passed from one person to a differﬁgte 3

person. In how many ways can the ball come back to A after severr
passes? (For example A - C - B —+D - A—- B —- (C - A and

6



A—-D—-A—-D—C—A— B — A are two ways in which the ball
can come back to A after seven passes.)

Solution: Let z,, be the number of ways in which A can get back the
ball after n passes. Let y, be the number of ways in which the ball
goes back to a fixed person other than A after n passes. Then

Tn = 3yn717

and
Yn = Tn-—1 + 2yn—1‘
We also have 1 =0, 2o =3, y; = 1 and 3, = 2.

Eliminating y,, and y,_,, we get z,,.; = 3z,,_1 + 2z,,. Thus

r3 = 31’1+2l’2_2 X 3= 6

Ty = 3x9+2r3=(3x3)+(2x6)=9+12=21;

Ts = Bwy+ 224 = (3 % 6) + (2 x 21) = 18 + 42 = 60;

vo = 3wyt 2rs5 = (3 x21)+ (2 x 60) = 63+ 120 = 183;
vr = 35+ 2a6 = (3 x 60) + (2 x 183) = 180 + 366 = 546.

Alternate solution: Since the ball goes back to one of the other 3
persons, we have
Ty + 3y, = 3",

since there are 3" ways of passing the ball in n passes. Using z, =
3yn_1, We obtain
Tpoy =371

with r1 = 0. Thus

27 =3 —26=3" -3 +1;=3°-3"+3" -2, =33 +3" -3 + 3
=30 -3 4+3' -3 +3%— 1, =3 -3 +3" -3 +32 -3
=(2x3%) 4+ (2x 3% + (2 x 3) =486 + 54 + 6 = 546.

. Let ABCD be a convex quadrilateral. Let the diagonals AC' and BD
intersect in P. Let PE, PF, PG and PH be the altitudes from P on
to the sides AB, BC, C'D and DA respectively. Show that ABC'D has
an incircle if and only if

1+1_1+1
PE PG PF PH’

Solution: Let AP = p, BP =¢q, CP =r, DP = s; AB = a, BC = b,
CD =cand DA =d. Let ZAPB = Z/CPD = 0. Then /BPC = /DPA =
m — 0. Let us also write PE = hy, PF = hy, PG = h3 and PH = hy. Page 4 of 6



Observe that
hia = pgsin€, hob=qgrsinf, hsc=rssinf), hyd = spsinb.

Hence
1 1 1 1

+—=—4—.
hi  hsy hy hy
is equivalent to
+ +—.
pq rs qr Sp

This is the same as
ars + cpq = bsp + dqr.

Thus we have to prove that a+c = b+d if and only if ars+cpg = bsp+dqr.
Now we can write a + c = b+ d as

a® + 4 2ac = b* + d* + 2bd.
But we know that
a> =p*+¢* —2pgcosh, A =r*+s*—2rscosb
b2 =q¢®> + 124 2qrcosf, d* =p*+s®+2pscosb,
Hence a + ¢ = b+ d is equivalent to

—pqcosf + —rscosf + ac = pscosf + grcosd + bd.

Similarly, by squaring ars + cpg = bsp + dgr we can show that it is
equivalent to

—pqgcost + —rscost + ac = pscosf + qrcos b + bd.

We conclude that a + ¢ = b + d is equivalent to cpq + ars = bps + dqr.
Hence ABCD has an in circle if and only if
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6. From a set of 11 square integers, show that one can choose 6 num-
bers a?,b?, c2,d?, 2, f? such that

A+ +F=d*+e+ 2 (mod 12).
Solution: The first observation is that we can find 5 pairs of squares

such that the two numbers in a pair have the same parity. We can
see this as follows:

Odd numbers | Even numbers | Odd pairs | Even pairs | Total pairs

O | N[ |Gl & N| x| ©| 5| =

O|O| |~ NN W W || OOt

Zl o] © 0| N| oGl sl o N = O
U1 U1 b b | | | N | =] —| O] ©
alaaa gl gl a g g o,

Let us take such 5 pairs: say (z1,47), (¢3,%3), ..., (zZ,43). Then 27 — y?
is divisible by 4 for 1 < j < 5. Let r; be the remainder when x? — yJQ
is divisible by 3, 1 < 7 < 3. We have 5 remainders ry,ry,73,74,75.
But these can be O, 1 or 2. Hence either one of the remainders
occur 3 times or each of the remainders occur once. If, for example
r1 =19 = r3, then 3 divides r; + 7y +r3; if 11 = 0,7 = 1 and r3 = 2, then
again 3 divides r; +ry+r3. Thus we can always find three remainders
whose sum is divisible by 3. This means we can find 3 pairs, say,
(23, 47), (23,3), (3, 43) such that 3 divides (27 —y7) + (23 —y3) + (23— 3).
Since each difference is divisible by 4, we conclude that we can find
6 numbers a2, b% 2, d?, e2, 2 such that

A+ +=d*+e*+ f2 (mod 12).
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