Problems and Solutions: INMO-2015

1. Let ABC be a right-angled triangle with $\angle B = 90^{\circ}$. Let BD be the altitude from B on to AC. Let P, Q and I be the incentres of triangles ABD, CBD and ABC respectively. Show that the circumcentre of of the triangle PIQ lies on the hypotenuse AC.

Solution: We begin with the following lemma:

Lemma: Let XYZ be a triangle with $\angle XYZ = 90 + \alpha$. Construct an isosceles triangle XEZ, externally on the side XZ, with base angle α . Then E is the circumcentre of $\triangle XYZ$.

Proof of the Lemma: Draw $ED \perp XZ$. Then DE is the perpendicular bisector of XZ. We also observe that $\angle XED = \angle ZED = 90 - \alpha$. Observe that E is on the perpendicular bisector of E. Construct the circumcircle of E in E. Draw perpendicular bisector of E and let it meet E in E. Then E is the circumcentre of E in E. Then E is the circumcentre of E in E. But we know that E is the E in E in E. Hence E in E is the circumcentre of E in E.

Let r_1 , r_2 and r be the inradii of the triangles ABD, CBD and ABC respectively. Join PD and DQ. Observe that $\angle PDQ = 90^{\circ}$. Hence

$$PQ^2 = PD^2 + DQ^2 = 2r_1^2 + 2r_2^2.$$

Let $s_1=(AB+BD+DA)/2$. Observe that BD=ca/b and $AD=\sqrt{AB^2-BD^2}=\sqrt{c^2-\left(\frac{ca}{b}\right)^2}=c^2/b$. This gives $s_1=cs/b$. But $r_1=s_1-c=(c/b)(s-b)=cr/b$. Similarly, $r_2=ar/b$. Hence

$$PQ^2 = 2r^2 \left(\frac{c^2 + a^2}{b^2}\right) = 2r^2.$$

Consider $\triangle PIQ$. Observe that $\angle PIQ = 90 + (B/2) = 135$. Hence PQ subtends 90° on the circumference of the circumcircle of $\triangle PIQ$. But we have seen that $\angle PDQ = 90^{\circ}$. Now construct a circle with PQ as diameter. Let it cut AC again in K. It follows that $\angle PKQ = 90^{\circ}$ and the points P, D, K, Q are concyclic. We also notice $\angle KPQ = \angle KDQ = 45^{\circ}$ and $\angle PQK = \angle PDA = 45^{\circ}$.

Thus PKQ is an isosceles right-angled triangle with KP = KQ. Therfore $KP^2 + KQ^2 = PQ^2 = 2r^2$ and hence KP = KQ = r.

Now $\angle PIQ = 90 + 45$ and $\angle PKQ = 2 \times 45^{\circ} = 90^{\circ}$ with KP = KQ = r. Hence K is the circumcentre of $\triangle PIQ$.

(Incidentally, This also shows that KI = r and hence K is the point of contact of the incircle of $\triangle ABC$ with AC.)

Solution 2: Here we use computation to prove that the point of contact K of the incircle with AC is the circumcentre of $\triangle PIQ$. We show that KP = KQ = r. Let r_1 and r_2 be the inradii of triangles ABD and CBD respectively. Draw $PL \perp AC$ and $QM \perp AC$. If s_1 is the semiperimeter of $\triangle ABD$, then $AL = s_1 - BD$.

But

$$s_1 = \frac{AB + BD + DA}{2}$$
, $BD = \frac{ca}{b}$, $AD = \frac{c^2}{b}$

Hence $s_1=cs/b$. This gives $r_1=s_1-c=cr/b$, $AL=s_1-BD=c(s-a)/b$. Hence $KL=AK-AL=(s-a)-\frac{c(s-a)}{b}=\frac{(b-c)(s-a)}{b}$. We observe that

$$2r^2 = \frac{(c+a-b)^2}{2} = \frac{c^2 + a^2 + b^2 - 2bc - 2ab + 2ca}{2} = (b^2 - ba - bc + ac) = (b-c)(b-a).$$

This gives

$$(s-a)(b-c) = (s-b+b-a)(b-c) = r(b-c) + (b-a)(b-c)$$
$$= r(b-c) + 2r^2 = r(b-c+c+a-b) = ra.$$

Thus KL = ra/b. Finally,

$$KP^2 = KL^2 + LP^2 = \frac{r^2a^2}{b^2} + \frac{r^2 + c^2}{b^2} = r^2.$$

Thus KP = r. Similarly, KQ = r. This gives KP = KI = KQ = r and therefore K is the circumcentre of $\triangle KIQ$.

(Incidentally, this also shows that $KL = ca/b = r_2$ and $KM = r_1$.)

2. For any natural number n > 1, write the infinite decimal expansion of 1/n (for example, we write $1/2 = 0.4\bar{9}$ as its infinite decimal expansion, not 0.5). Determine the length of the non-periodic part of the (infinite) decimal expansion of 1/n.

Solution: For any prime p, let $\nu_p(n)$ be the maximum power of p dividing n; ie $p^{\nu_p(n)}$ divides n but not higher power. Let r be the

length of the non-periodic part of the infinite decimal expansion of 1/n.

Write

$$\frac{1}{n} = 0.a_1 a_2 \cdots a_r \overline{b_1 b_2 \cdots b_s}.$$

We show that $r = \max(\nu_2(n), \nu_5(n))$.

Let a and b be the numbers $a_1a_2\cdots a_r$ and $b=b_1b_2\cdots b_s$ respectively. (Here a_1 and b_1 can be both 0.) Then

$$\frac{1}{n} = \frac{1}{10^r} \left(a + \sum_{k>1} \frac{b}{(10^s)^k} \right) = \frac{1}{10^r} \left(a + \frac{b}{10^s - 1} \right).$$

Thus we get $10^r(10^s-1)=n\big((10^s-1)a+b\big)$. It shows that $r\geq \max(\nu_2(n),\nu_5(n))$. Suppose $r>\max(\nu_2(n),\nu_5(n))$. Then 10 divides b-a. Hence the last digits of a and b are equal: $a_r=b_s$. This means

$$\frac{1}{n} = 0.a_1 a_2 \cdots a_{r-1} \overline{b_s b_1 b_2 \cdots b_{s-1}}.$$

This contradicts the definition of r. Therefore $r = \max(\nu_2(n), \nu_5(n))$.

3. Find all real functions f from $\mathbb{R} \to \mathbb{R}$ satisfying the relation

$$f(x^2 + yf(x)) = xf(x+y).$$

Solution: Put x=0 and we get $f\big(yf(0)\big)=0$. If $f(0)\neq 0$, then yf(0) takes all real values when y varies over real line. We get $f(x)\equiv 0$. Suppose f(0)=0. Taking y=-x, we get $f\big(x^2-xf(x)\big)=0$ for all real x.

Suppose there exists $x_0 \neq 0$ in \mathbb{R} such that $f(x_0) = 0$. Putting $x = x_0$ in the given relation we get

$$f(x_0^2) = x_0 f(x_0 + y),$$

for all $y \in \mathbb{R}$. Now the left side is a constant and hence it follows that f is a constant function. But the only constant function which satisfies the equation is identically zero function, which is already obtained. Hence we may consider the case where $f(x) \neq 0$ for all $x \neq 0$.

Since $f(x^2 - xf(x)) = 0$, we conclude that $x^2 - xf(x) = 0$ for all $x \neq 0$. This implies that f(x) = x for all $x \neq 0$. Since f(0) = 0, we conclude that f(x) = x for all $x \in R$.

Thus we have two functions: $f(x) \equiv 0$ and f(x) = x for all $x \in \mathbb{R}$.

4. There are four basket-ball players A,B,C,D. Initially, the ball is with A. The ball is always passed from one person to a different person. In how many ways can the ball come back to A after **seven** passes? (For example $A \to C \to B \to D \to A \to B \to C \to A$ and

 $A \to D \to A \to D \to C \to A \to B \to A$ are two ways in which the ball can come back to A after seven passes.)

Solution: Let x_n be the number of ways in which A can get back the ball after n passes. Let y_n be the number of ways in which the ball goes back to a fixed person other than A after n passes. Then

$$x_n = 3y_{n-1}$$
,

and

$$y_n = x_{n-1} + 2y_{n-1}$$
.

We also have $x_1 = 0$, $x_2 = 3$, $y_1 = 1$ and $y_2 = 2$.

Eliminating y_n and y_{n-1} , we get $x_{n+1} = 3x_{n-1} + 2x_n$. Thus

$$x_3 = 3x_1 + 2x_2 = 2 \times 3 = 6;$$

 $x_4 = 3x_2 + 2x_3 = (3 \times 3) + (2 \times 6) = 9 + 12 = 21;$
 $x_5 = 3x_3 + 2x_4 = (3 \times 6) + (2 \times 21) = 18 + 42 = 60;$
 $x_6 = 3x_4 + 2x_5 = (3 \times 21) + (2 \times 60) = 63 + 120 = 183;$
 $x_7 = 3x_5 + 2x_6 = (3 \times 60) + (2 \times 183) = 180 + 366 = 546.$

Alternate solution: Since the ball goes back to one of the other 3 persons, we have

$$x_n + 3y_n = 3^n,$$

since there are 3^n ways of passing the ball in n passes. Using $x_n = 3y_{n-1}$, we obtain

$$x_{n-1} + x_n = 3^{n-1},$$

with $x_1 = 0$. Thus

$$x_7 = 3^6 - x_6 = 3^6 - 3^5 + x_5 = 3^6 - 3^5 + 3^4 - x_4 = 3^6 - 3^5 + 3^4 - 3^3 + x_3$$
$$= 3^6 - 3^5 + 3^4 - 3^3 + 3^2 - x_2 = 3^6 - 3^5 + 3^4 - 3^3 + 3^2 - 3$$
$$= (2 \times 3^5) + (2 \times 3^3) + (2 \times 3) = 486 + 54 + 6 = 546.$$

5. Let ABCD be a convex quadrilateral. Let the diagonals AC and BD intersect in P. Let PE, PF, PG and PH be the altitudes from P on to the sides AB, BC, CD and DA respectively. Show that ABCD has an incircle if and only if

$$\frac{1}{PE} + \frac{1}{PG} = \frac{1}{PF} + \frac{1}{PH}.$$

Solution: Let AP = p, BP = q, CP = r, DP = s; AB = a, BC = b, CD = c and DA = d. Let $\angle APB = \angle CPD = \theta$. Then $\angle BPC = \angle DPA = \pi - \theta$. Let us also write $PE = h_1$, $PF = h_2$, $PG = h_3$ and $PH = h_4$. Page 4 of 6

Observe that

$$h_1 a = pq \sin \theta$$
, $h_2 b = qr \sin \theta$, $h_3 c = rs \sin \theta$, $h_4 d = sp \sin \theta$.

Hence

$$\frac{1}{h_1} + \frac{1}{h_3} = \frac{1}{h_2} + \frac{1}{h_4}.$$

is equivalent to

$$\frac{a}{pq} + \frac{c}{rs} = \frac{b}{qr} + \frac{d}{sp}.$$

This is the same as

$$ars + cpq = bsp + dqr.$$

Thus we have to prove that a+c=b+d if and only if ars+cpq=bsp+dqr. Now we can write a+c=b+d as

$$a^2 + c^2 + 2ac = b^2 + d^2 + 2bd.$$

But we know that

$$a^{2} = p^{2} + q^{2} - 2pq\cos\theta, \quad c^{2} = r^{2} + s^{2} - 2rs\cos\theta$$

$$b^{2} = q^{2} + r^{2} + 2qr\cos\theta, \quad d^{2} = p^{2} + s^{2} + 2ps\cos\theta,$$

Hence a + c = b + d is equivalent to

$$-pq\cos\theta + -rs\cos\theta + ac = ps\cos\theta + qr\cos\theta + bd.$$

Similarly, by squaring ars + cpq = bsp + dqr we can show that it is equivalent to

$$-pq\cos\theta + -rs\cos\theta + ac = ps\cos\theta + qr\cos\theta + bd.$$

We conclude that a+c=b+d is equivalent to cpq+ars=bps+dqr. Hence ABCD has an in circle if and only if

$$\frac{1}{h_1} + \frac{1}{h_3} = \frac{1}{h_2} + \frac{1}{h_4}.$$

6. From a set of 11 square integers, show that one can choose 6 numbers $a^2, b^2, c^2, d^2, e^2, f^2$ such that

$$a^2 + b^2 + c^2 \equiv d^2 + e^2 + f^2 \pmod{12}$$
.

Solution: The first observation is that we can find 5 pairs of squares such that the two numbers in a pair have the same parity. We can see this as follows:

Odd numbers	Even numbers	Odd pairs	Even pairs	Total pairs
0	11	0	5	5
1	10	0	5	5
2	9	1	4	5
3	8	1	4	5
4	7	2	3	5
5	6	2	3	5
6	5	3	2	5
7	4	3	2	5
8	3	4	1	5
9	2	4	1	5
10	1	5	0	5
11	0	5	0	5

Let us take such 5 pairs: say $(x_1^2,y_1^2),(x_2^2,y_2^2),\dots,(x_5^2,y_5^2)$. Then $x_j^2-y_j^2$ is divisible by 4 for $1\leq j\leq 5$. Let r_j be the remainder when $x_j^2-y_j^2$ is divisible by 3, $1\leq j\leq 3$. We have 5 remainders r_1,r_2,r_3,r_4,r_5 . But these can be 0, 1 or 2. Hence either one of the remainders occur 3 times or each of the remainders occur once. If, for example $r_1=r_2=r_3$, then 3 divides $r_1+r_2+r_3$; if $r_1=0,r_2=1$ and $r_3=2$, then again 3 divides $r_1+r_2+r_3$. Thus we can always find three remainders whose sum is divisible by 3. This means we can find 3 pairs, say, $(x_1^2,y_1^2),(x_2^2,y_2^2),(x_3^2,y_3^2)$ such that 3 divides $(x_1^2-y_1^2)+(x_2^2-y_2^2)+(x_3^2-y_3^2)$. Since each difference is divisible by 4, we conclude that we can find 6 numbers a^2,b^2,c^2,d^2,e^2,f^2 such that

$$a^2 + b^2 + c^2 \equiv d^2 + e^2 + f^2 \pmod{12}$$
.