1. Three positive real numbers a, b, c are such that $a^{2}+5 b^{2}+4 c^{2}-4 a b-4 b c=0$. Can a, b, c be the lengths of the sides of a triangle? Justify your answer.

Solution

No. Note that $a^{2}+5 b^{2}+4 c^{2}-4 a b-4 b c=(a-2 b)^{2}+(b-2 c)^{2}=0 \Rightarrow a: b: c=4: 2: 1 \Rightarrow$ $b+c: a=3: 4$. The triangle inequality is violated.
2. The roots of the equation

$$
x^{3}-3 a x^{2}+b x+18 c=0
$$

form a non-constant arithmetic progression and the roots of the equation

$$
x^{3}+b x^{2}+x-c^{3}=0
$$

form a non-constant geometric progression. Given that a, b, c are real numbers, find all positive integral values of a and b.

Solution

Let $\alpha-d, \alpha, \alpha+d(d \neq 0)$ be the roots of the first equation and let $\beta / r, \beta, \beta r(r>0$ and $r \neq 1$) be the roots of the second equation. It follows that $\alpha=a, \beta=c$ and

$$
\begin{align*}
a^{3}-a d^{2} & =-18 c ; \quad 3 a^{2}-d^{2}=b \tag{1}\\
c(1 / r+1+r) & =-b ; \quad c^{2}(1 / r+1+r)=1 \tag{2}
\end{align*}
$$

Eliminating d, r and c yields

$$
\begin{equation*}
a b^{2}-2 a^{3} b-18=0 \tag{3}
\end{equation*}
$$

whence $b=a^{2} \pm(1 / a) \sqrt{a^{6}+18 a}$. For positive integral values of a and b it must be that $a^{6}+18 a$ is a perfect square. Let $x^{2}=a^{6}+18 a$. Then $a^{3}<x^{2}<a^{3}+1$ for $a>2$ and hence no solution. For $a=1$ there is no solution. For $a=2, x=10$ and $b=9$. Thus the admissible pair is $(a, b)=(2,9)$.
3. Let $A B C$ be an acute-angled triangle in which $\angle A B C$ is the largest angle. Let O be its circumcentre. The perpendicular bisectors of $B C$ and $A B$ meet $A C$ at X and Y respectively. The internal bisectors of $\angle A X B$ and $\angle B Y C$ meet $A B$ and $B C$ at D and E respectively. Prove that $B O$ is perpendicular to $A C$ if $D E$ is parallel to $A C$.

Solution

Observe that triangles $A Y B$ and $B X C$ are isosceles $(A Y=B Y$ and $B X=C X)$. This implies $\angle B Y C=2 \angle B A C$ and $\angle A X B=2 \angle A C B$. Since $X D$ and $Y E$ are angle bisectors we have $\angle A X D=\angle A C B$ and $\angle C Y E=\angle C A B$. Hence $X D$ is parallel to $B C$ and $Y E$ is parallel to $A B$. Therefore

$$
\begin{equation*}
\frac{C E}{E B}=\frac{C Y}{A Y} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A X}{C X} \tag{5}
\end{equation*}
$$

Now, if $D E$ is parallel to $A C$ then $\frac{C E}{E B}=\frac{A D}{D B}$. Therefore we must have

$$
\begin{equation*}
\frac{C Y}{A Y}=\frac{A X}{C X} \tag{6}
\end{equation*}
$$

But then

$$
\begin{equation*}
\frac{C Y}{A Y}+1=\frac{A X}{C X}+1 \Rightarrow \frac{A C}{A Y}=\frac{A C}{C X} \Rightarrow A Y=C X \tag{7}
\end{equation*}
$$

Hence $B Y=A Y=C X=B X$. Thus $\angle B X Y=\angle B Y X$ i.e $\angle A X B=\angle B Y C$ or $\angle A C B=$ $\angle B A C$ i.e triangle $A B C$ is isosceles with $A B=C B$. Hence $B O$ is the perpendicular bisector of $A C$.
4. A person moves in the $x-y$ plane moving along points with integer co-ordinates x and y only. When she is at point (x, y), she takes a step based on the following rules:
(a) if $x+y$ is even she moves to either $(x+1, y)$ or $(x+1, y+1)$;
(b) if $x+y$ is odd she moves to either $(x, y+1)$ or $(x+1, y+1)$.

How many distinct paths can she take to go from $(0,0)$ to $(8,8)$ given that she took exactly three steps to the right $((x, y)$ to $(x+1, y))$?

Solution

We note that she must also take three up steps and five diagonal steps. Now, a step to the right or an upstep changes the parity of the co-ordinate sum, and a diagonal step does not change it. Therefore, between two right steps there must be an upstep and similarly between two upsteps there must be a right step. We may, therefore write

$$
H V H V H V
$$

The diagonal steps may be distributed in any fashion before, in between and after the HV sequence. The required number is nothing but the number of ways of distributing 5 identical objects into 7 distinct boxes and is equal to $\binom{11}{6}$.
5. Let a, b, c be positive numbers such that

$$
\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c} \leq 1
$$

Prove that $\left(1+a^{2}\right)\left(1+b^{2}\right)\left(1+c^{2}\right) \geq 125$. When does the equality hold?

Solution

$$
\begin{equation*}
\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c} \leq 1 \Rightarrow \frac{a}{1+a} \geq \frac{1}{1+b}+\frac{1}{1+c} \tag{8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{b}{1+b} \geq \frac{1}{1+a}+\frac{1}{1+c}, \quad \frac{c}{1+c} \geq \frac{1}{1+a}+\frac{1}{1+c} . \tag{9}
\end{equation*}
$$

Apply AM-GM to get that

$$
\begin{equation*}
\frac{a}{1+a} \geq \frac{2}{\sqrt{(1+b)(1+c)}}, \quad \frac{b}{1+b} \geq \frac{2}{\sqrt{(1+a)(1+c)}}, \quad \frac{c}{1+c} \geq \frac{2}{\sqrt{(1+a)(1+b)}} \tag{10}
\end{equation*}
$$

Multiplying these results we get

$$
\begin{equation*}
a b c \geq 8 \tag{11}
\end{equation*}
$$

Now take

$$
\begin{equation*}
F=\left(1+a^{2}\right)\left(1+b^{2}\right)\left(1+c^{2}\right)=1+a^{2}+b^{2}+c^{2}+a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2} c^{2} \tag{12}
\end{equation*}
$$

and apply AM-GM to a^{2}, b^{2}, c^{2} and to $a^{2} b^{2}, b^{2} c^{2}, c^{2} a^{2}$ to get

$$
\begin{equation*}
F \geq 1+3\left(a^{2} b^{2} c^{2}\right)^{1 / 3}+3\left(a^{4} b^{4} c^{4}\right)^{1 / 3}+a^{2} b^{2} c^{2}=\left[1+\left(a^{2} b^{2} c^{2}\right)^{1 / 3}\right]^{3} \geq\left[1+8^{2 / 3}\right]^{3}=125 \tag{13}
\end{equation*}
$$

Wherein the equality holds when $a=b=c=2$.
6. Let D, E, F be the points of contact of the incircle of an acute-angled triangle $A B C$ with $B C, C A, A B$ respectively. Let I_{1}, I_{2}, I_{3} be the incentres of the triangles $A F E, B D F, C E D$, respectively. Prove that the lines $I_{1} D, I_{2} E, I_{3} F$ are concurrent.

Solution

Observe that $\angle A F E=\angle A E F=90^{\circ}-A / 2$ and $\angle F D E=\angle A E F=90^{\circ}-A / 2$. Again $\angle E I_{1} F=90^{\circ}+A / 2$. Thus

$$
\angle E I_{1} F+\angle F D E=180^{\circ} .
$$

Hence I_{1} lies on the incircle. Also

$$
\begin{equation*}
\angle I_{1} F E=(1 / 2) \angle A F E=(1 / 2) \angle A E F=\angle I_{1} E F \tag{14}
\end{equation*}
$$

Thus $I_{1} E=I_{1} F$. But then they are equal chords of a circle and so they must subtend equal angles at the circumference. Therefore $\angle I_{1} D F=\angle I_{1} D E$ and so $I_{1} D$ is the internal bisector of $\angle F D E$. Similarly we can show that $I_{2} E$ and $I_{3} F$ are internal bisectors of $\angle D E F$ and $\angle D F E$ respectively. Thus the three lines $I_{1} D, I_{2} E, I_{3} F$ are concurrent at the incentre of triangle $D E F$.

