#### **Instructions for students**

- Write your Name and Roll No. at the top of the first pages of all problems.
- This examination paper consists of 37 pages of problems including answer boxes.
- Total marks for INChO 2014 paper are **98**.
- You have 3 hours to complete all the problems.
- Blank space for rough work has been provided at the end of the paper.
- Use only a pen to write the answers in the answer boxes. Anything written by a pencil will not be considered for assessment.
- All answers must be written in the appropriate boxes. Anything written elsewhere will not be considered for assessment.
- You must show the main steps in the calculations,
- Use only a non-programmable scientific calculator.
- For objective type question, mark X in the correct box. Some of the objective questions may have more than one correct answer.
- Values of fundamental constants required for calculations are provided on page 4.
- A copy of the Periodic Table of the Elements is provided at the end of the paper.
- Do not leave the examination room until you are directed to do so.
- The question paper will be uploaded on the HBCSE website by 4<sup>th</sup> February 2014.

# **Fundamental Constants**

Avogadro number  $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ 

Electronic charge  $e = 1.602 \times 10^{-19} \text{ C}$ 

Molar gas constant  $R = 8.314 \text{ J K}^{-1} \text{mol}^{-1}$ 

 $= 8.314 \text{ K Pa.dm}^3 \text{ K}^{-1} \text{mol}^{-1}$ 

 $= 0.082 \text{ L.atm K}^{-1} \text{mol}^{-1}$ 

1 atomic mass unit (1u) =  $931.5 \text{ MeV/C}^2$ 

1 eV =  $1.602 \times 10^{-19} \text{ J}$ 

 $1 \text{ cm}^{-1}$  = 11.9 x  $10^{-3} \text{ kJ mol}^{-1}$ 

Rydberg constant  $R_H = 2.179 \times 10^{-18} J$ 

Mass of electron  $m_e = 9.109 \times 10^{-31} \text{ kg}$ 

Plancks constant  $h = 6.625 \times 10^{-34} \text{ Js}$ 

Speed of light  $c = 2.998 \text{ x } 10^8 \text{ ms}^{-1}$ 

Acceleration due to gravity  $g = 9.8 \text{ ms}^{-2}$ 

Density of mercury =  $13.6 \times 10^3 \text{ kg m}^{-3}$ 

Faraday constant F = 96485 C

| <u>Indi</u> | an National Chemistry Olympiad                                                                                                                                                                                                                                                                                                                                                                      | Theory 2014                                                                                                                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Na          | nme of Student                                                                                                                                                                                                                                                                                                                                                                                      | Roll No                                                                                                                                                                                |
| Pro         | blem 1                                                                                                                                                                                                                                                                                                                                                                                              | 17 marks                                                                                                                                                                               |
| Met         | allurgy                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |
|             | Metallurgy is the technology of obtaining metal and the ore involved, metallurgical operations hydrometallurgy, pyrometallurgy and electrome. In hydrometallurgy, the metal is extracted into complexing agent. Hydrometallurgy is used for process is known as <b>leaching.</b> Potassium cyargold.  In presence of air, native gold dissolves in a forming [Au(CN) <sub>2</sub> ] <sup>-1</sup> . | are divided into three broad divisions as etallurgy.  o an aqueous solution using oxygen and a for noble metals like silver and gold. The nide is traditionally used for extraction of |
| 1.1         | Write a balanced equation to represent dissolution                                                                                                                                                                                                                                                                                                                                                  | on of gold in KCN solution.                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                     | (0.5 mark)                                                                                                                                                                             |
| 1.2         | Calculate the mass of KCN required to extract 2.2% gold on w/w basis.                                                                                                                                                                                                                                                                                                                               | gold from 100 kg of a rock sample having                                                                                                                                               |

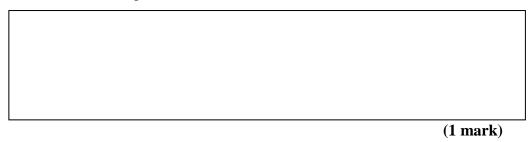
Silver and gold both form cyanide complexes  $[Ag~(CN)_2]^{-1}$ ,  $[Au~(CN)_2]^{-1}$  with formation constants as  $4.2\times10^{20}$  and  $1.0\times10^{37}$  respectively.

**1.3** Calculate the equilibrium constant for the reaction.

$$Au^{+1} \; (aq) \; + \left[Ag(CN)_2\right]^{-1} \; (aq) \; \rightleftharpoons \; Ag^{+1} \; (aq) \; + \left[Au(CN)_2\right]^{-1} \; (aq)$$

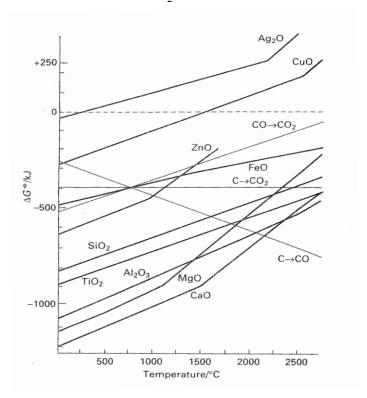
(0.5 mark)

Using **1.3** and the information given below, calculate the equilibrium concentrations of  $[Au(CN)_2]^{-1}$  and  $[Ag(CN)_2]^{-1}$  when solid gold is added in excess to 0.1M  $[Ag(CN)_2]^{-1}$  solution. (under standard condition of temperature and pressure)


1) 
$$Ag^{+1}(aq) + e^{-} \rightleftharpoons Ag(s) E^{0} = 0.8V$$

2) 
$$Au^+(aq) + e^- \rightleftharpoons Au(s) \quad E^0 = 1.83V$$

(2 marks)


Aqua regia is a mixture of concentrated hydrochloric acid and nitric acid in the ratio of 3:1 on volume basis. It was developed by the alchemists to dissolve gold. In the dissolution process, gold is oxidized and converted to a chloro complex and nitric acid gets reduced to nitrogen dioxide.

**1.5** Write a balanced equation for the individual reactions.



In pyro-metallurgy the metals are extracted from ores and concentrates by heat treatment. This involves conversion to metal oxide. This is followed by the reduction of the oxide to the metal using carbon or carbon monoxide. Metals like iron, copper, zinc and manganese are obtained by this technique.

**Ellingham diagram** is a graph showing the variation of the standard free energy of formation ( $\Delta G^{\circ}$ ) of metal oxides with temperature. The diagram also shows lines for formation of CO and CO<sub>2</sub>.



Ref: Shriver D.F. and Atkins P.W., *Inorganic Chemistry*, 2<sup>nd</sup> edition, ELBS, Oxford University Press, (1994), pg no. 278.

- **1.6** Using the **Ellingham diagram** given above answer the following. Mark **X** in the correct box.
  - i) The equation of lines in the diagram is given by
    - a)  $\Delta G = \Delta H T\Delta S$
    - b)  $\Delta G = \Delta H + T\Delta S$
    - c)  $\Delta G^0 = \Delta H^0 T\Delta S^0$
    - d)  $\Delta G^0 = \Delta H^0 + T\Delta S^0$
  - ii) The statement that is true for the line  $C \rightarrow CO_2$  is
    - a) the standard entropy change of the above reaction is positive
    - b) the standard entropy change of the above reaction is negative
    - c) the standard entropy change of the above reaction is zero.
  - iii) The statement that is true for the line  $CO \rightarrow CO_2$  is
    - a) the standard entropy change of the above reaction is positive
    - b) the standard entropy change of the above reaction is negative
    - c) the standard entropy change of the above reaction is zero.
  - iv) The lowest temperature below which FeO cannot be reduced by coke is
    - a) 750°C
    - b) 1300°C
    - c) 1000°C
  - v) In a blast furnace at 2000°C the most preferred reaction that will take place for carbon containing species is
    - a)  $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$
    - b)  $\frac{1}{2}C(s) + \frac{1}{2}O_2(g) \rightarrow \frac{1}{2}CO_2(g)$
    - c)  $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$
  - vi) The preferred temperature for Mg to be used as a reducing agent for SiO<sub>2</sub> is
    - a) below 2200°C
    - b) above 2500°C
    - c) not possible at any temperature

(4.5 marks)

In electrometallurgy, the pure metal is obtained by electrolysis of its appropriate salt.

Aluminum is produced from bauxite by electro-reduction of alumina. The process is known as **Hall- Herault's** process Alumina is dissolved in a conducting medium like cryolite Na<sub>3</sub>AlF<sub>6</sub>, as it cannot conduct electricity in the molten state. The temperature of melting of cryolite is reduced by adding conducting impurities to it. In the electrolytic bath, aluminum gets deposited at the cathode and oxygen gets liberated at the anode. The liberated oxygen attacks the graphite anode and forms carbon dioxide.

|        |                               |            |           |                 |                                 | (1 mark) |         |
|--------|-------------------------------|------------|-----------|-----------------|---------------------------------|----------|---------|
|        | nelting poin<br>n fluoride cr | -          |           | _               | is 1282.7K.                     | However, | oy addi |
| the me | -                             | o 1233K as | suming th | at it dissociat | luoride needed<br>es completely |          |         |
|        |                               |            |           |                 |                                 |          |         |
|        |                               |            |           |                 |                                 |          |         |
|        |                               |            |           |                 |                                 |          |         |
|        |                               |            |           |                 |                                 |          |         |

(3 marks)

The electrolysis is carried out with a potential difference of 4.5V between the two electrodes and the current passing through the cell is 180kA with the current efficiency of 95%.

| i)  | Calculate the amount of energy required for production of 100kg of alumin |
|-----|---------------------------------------------------------------------------|
|     |                                                                           |
|     |                                                                           |
|     |                                                                           |
|     |                                                                           |
|     |                                                                           |
|     |                                                                           |
|     |                                                                           |
|     | (2 marks)                                                                 |
|     | (2 marks)                                                                 |
| ii) | (2 marks)  Calculate the rate of production of carbon dioxide per hour.   |
| ii) |                                                                           |

| Name of Student | Roll No |
|-----------------|---------|
|                 |         |

Problem 2 15 Marks

## **Energy storage devices**

#### A. Hydrogen storage as metal hydrides

Hydrogen is a renewable source of energy and considered as a fuel of the future. One of the problems of its use is storage and transportation. Research has shown that several metal hydrides act as 'hydrogen tanks'. Large quantities of hydrogen can be absorbed on them and desorbed when needed through absorption/desorption cycles. Lithium nitride, Li<sub>3</sub>N is one of the well studied hydrogen storage material. Almost all absorbed hydrogen can be subsequently desorbed if the hydrogenated sample of Li<sub>3</sub>N is evacuated to 1 Pa and heated up to 450°C.

The hydrogen uptake of  $Li_3N$  is a chemical reaction in two steps. Both steps involve disproportionation of  $H_2$ .

2.1 Complete the following equations by identifying A, B and C.

| $Li_3N + H_2 \rightarrow$                 |   | + |   |
|-------------------------------------------|---|---|---|
|                                           | A |   | В |
| $(\mathbf{A}) + \mathbf{H}_2 \rightarrow$ |   | + |   |
|                                           | C |   | В |

(1.5 marks)

| 2.2 | Under standard  | conditions   | of | temperature   | and  | pressure, | calculate | the | maximum |
|-----|-----------------|--------------|----|---------------|------|-----------|-----------|-----|---------|
|     | volume of hydro | gen that can | be | stored in 1kg | of L | $i_3N$ .  |           |     |         |

2.3

| When a certain mass of compound B was reacted with excess amount of 0.5M HCl, a   |                                                     |     |          |          |     |     |          |    |   |      |    |
|-----------------------------------------------------------------------------------|-----------------------------------------------------|-----|----------|----------|-----|-----|----------|----|---|------|----|
| colourless gas was produced. Passing this gas over CuO(s) resulted in decrease in |                                                     |     |          |          |     |     |          |    |   |      |    |
| mas                                                                               | mass of the solid by 2.096 g.                       |     |          |          |     |     |          |    |   |      |    |
| (i)                                                                               | Write                                               | the | balanced | equation | for | the | reaction | of | В | with | HC |
| (ii)                                                                              | (ii) Calculate the mass of <b>B</b> taken in grams. |     |          |          |     |     |          |    |   |      |    |

(1 mark)

Mg and  $Mg_2Ni$  also form hydrides which can be desorbed under suitable conditions of temperature and pressure.  $Mg_2NiH_4$  is formed by a technique known as hybriding combustion synthesis.  $MgH_2$  is synthesised by the reaction of  $H_2$  and Mg at high temperatures and pressure in presence of a catalyst.

2.4 In  $Mg_2NiH_4$ , Ni(0) atoms form a face centered cubic lattice in which the  $Mg^{+2}$  ions occupy interstitial positions. The unit cell length of  $Mg_2NiH_4$  was found to be  $6.465\times10^{-10}$  m.

A hydrogen cylinder at  $20^{0}$ C has number of moles of hydrogen per unit volume which is (1/100) times the number of moles of hydrogen present in unit volume of Mg<sub>2</sub>NiH<sub>4</sub>. Calculate the pressure (in bar) in this cylinder.

| - | (2 |
|---|----|
| - |    |
| 1 |    |
| 1 |    |
| 1 |    |
| 1 |    |
| - |    |
| - |    |
| - |    |
| - |    |
| - |    |
| - |    |
| - |    |
| - |    |
| - |    |
| 1 |    |
| - |    |
| - |    |
| 1 |    |
| - |    |
| 1 |    |
| 1 |    |
| - |    |
| - |    |
| - |    |
|   |    |

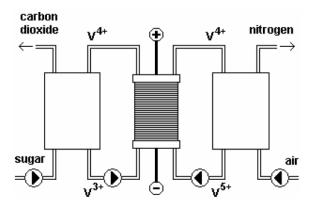
(2 marks)

The desorption equilibrium of Mg<sub>2</sub>NiH<sub>4</sub> is as given below

$$Mg_2Ni H_4(s) \rightleftharpoons Mg_2Ni(s) + 2H_2(g)$$

The equilibrium pressure of hydrogen was found to be 7.03 bar and 1.05 bar at 606K and 533K respectively. Assume that the enthalpy values do not change with temperature and  $\Delta H_f^{\circ}$  (Mg<sub>2</sub>NiH<sub>4</sub>) = -176.0 kJ mol<sup>-1</sup>.

**2.5** Calculate the standard enthalpy change (kJmol<sup>-1</sup>) for the reaction

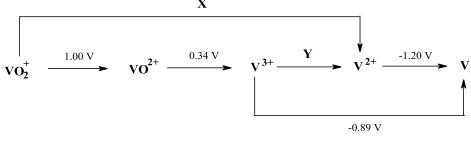

$$2Mg(s) + Ni(s) \rightleftharpoons Mg_2Ni(s)$$

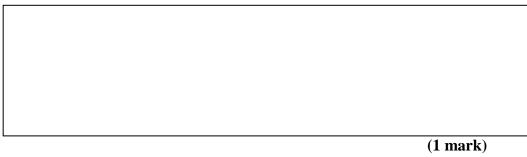


#### B. Fuel cells – Green and renewable sources of energy

Fuel cells convert the chemical energy of combustion in a fuel directly into electrical energy without the losses associated with the use of thermodynamic heat engines. A group of researchers have invented a fuel cell using cane sugar ( $C_{12}H_{22}O_{11}$ ). This system consists of two reaction vessels. The reaction vessel on the left hand side contains cane sugar and  $VO^{2+}$  ions in a strong acidic solution. Air is pumped in the right hand side vessel which also contains  $VO^{2+}$  ions in a strong acidic solution. The assembly contains a battery at the centre that is responsible to generate electricity.

In the left hand side vessel,  $VO^{2+}$  is reduced to  $V^{3+}$  and cane sugar is oxidised to  $CO_2$ . In the right hand side vessel,  $VO^{2+}$  is oxidised by oxygen to form  $VO_2^{+}$ . The fuel cell diagram is indicated below.





(Ref: Excell Robert H.B and Spaziante Placido (2004), A fuel power cell powered by sugar, The Joint International Conference on "Sustainable Energy and Environment, Thailand, 1-3 Dec 2004.)

|   | Write balanced equations for all the reactions in the (a) left side reaction vessel          |
|---|----------------------------------------------------------------------------------------------|
| ſ | (b) right side reaction vessel.                                                              |
|   |                                                                                              |
|   |                                                                                              |
| L | (2                                                                                           |
|   | (2 marks)  Calculate the volume of air that has to be pumped in at 25°C and 101 kPa into the |
|   | right side vessel, for the consumption of 10g of cane sugar in the other vessel (a           |
|   | contains 21 % of volume oxygen).                                                             |

(1.5 marks)

**2.8** Calculate the values of **X** and **Y** (in volts) from the given information.





In the battery at the centre between the reaction vessels, the following half cell reactions take place during discharge

The standard reduction potentials are  $E^{\circ}(vo^{2+}/v^{3+}) = 0.34 \text{ V}$  and  $E^{\circ}(vo_{2^+}/vo^{2+}) = 1.00 \text{ V}$  respectively. Assume that the concentration of  $V^{3+}(aq)$  and  $VO_2^{+}(aq)$  is equal to  $2.00 \text{ mol } L^{-1}$  (obtained from the reactions taking place in the reaction vessels).

**2.9** Determine  $[V^{3+}]$ ,  $[VO_2^{+}]$  and  $[VO^{+2}]$  in the battery when the potential of the battery is 0.32V. The temperature of the reaction vessel is 25 °C throughout.

(2.5 marks)

| 2.10 | The standard Gibbs free energy change for the complete combustion of su       | crose to |
|------|-------------------------------------------------------------------------------|----------|
|      | carbon dioxide and water is -5684kJ mol <sup>-1</sup> .                       |          |
|      | Calculate the theoretical limit on the efficiency of direct conversion of che | emical   |
|      | energy in sugar to electricity by this method under standard conditions.      |          |
|      |                                                                               |          |
|      |                                                                               |          |
|      |                                                                               |          |
|      |                                                                               |          |
|      |                                                                               |          |

Name of Student

25 marks

**Roll No** 

Problem 3

#### **ALKALOIDS**

Alkaloids are naturally occurring nitrogen heterocycles. Although they are poisonous, when used in very small quantities they have medicinal value as well.

Alkaloid **A** (MF  $C_{17}H_{23}NO_3$ ) on hydrolysis with Ba(OH)<sub>2</sub> yields two products **B** (MF  $C_9H_{10}O_3$ ) and **C** ( $C_8H_{15}NO$ ).

3.1 Compound **B** does not add bromine and it dissolves in NaHCO<sub>3</sub>. Heating **B** strongly yields compound **D** (MF C<sub>9</sub>H<sub>8</sub>O<sub>2</sub>). Based on these observations which of the following statement/s is/are true for compound **B**.

a) **B** has a hydroxyl group

- b) **B** is an olefin
- c) **B** has a carboxyl group
- d) **B** is an aromatic compound

(1.5 marks)

**3.2** Compound **D** on oxidation gives benzoic acid as one of the products. Based on this observation, the possible structure/s for compound **D** is/ are

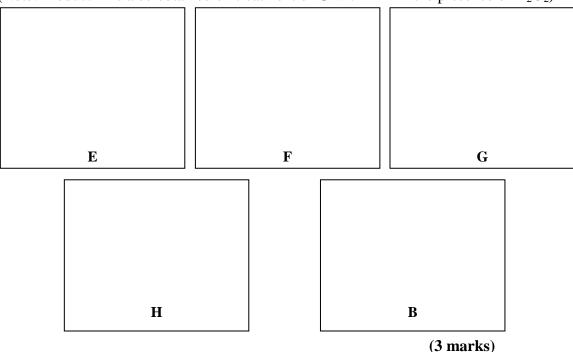
a) COOH C<sub>6</sub>H<sub>5</sub>C=CH<sub>2</sub>

**b)**  $C_6H_5CH=CHCOOH$ 

c) COOH

d)  $C_6H_5$  (CH<sub>2</sub>)<sub>2</sub> COOH

CH=CH<sub>2</sub>


(2 marks)

shown below.

3.3 Compound **B** has been synthesized by the following reaction sequence. Draw the structures of the intermediates **E-H** and the structure of **B**.

$$C_6H_5COCH_3 \xrightarrow{HCN} E \xrightarrow{H_3O^+} F \xrightarrow{heat} G \xrightarrow{HBr} H \xrightarrow{aq.NaOH} B$$

(Note: Product **H** is also obtained on treatment of **G** with HBr in the presence of  $H_2O_2$ )



Structure elucidation of an alkaloid makes use of several chemical and physical methods. One of them is the Hoffman's exhaustive methylation method for determining the nature of the nitrogen heterocyclic ring. The heterocyclic ring is opened up with loss of nitrogen

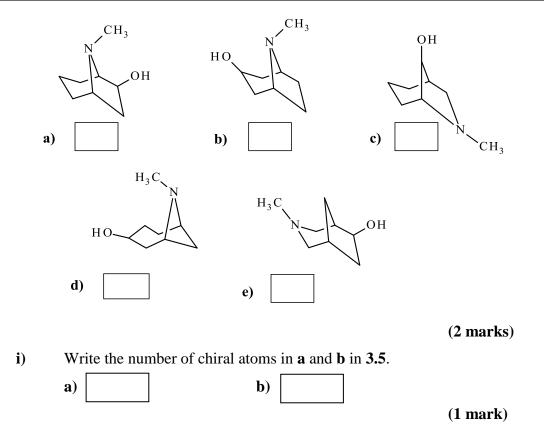
as an amine and formation of the less substituted olefin. The reactions involved are

$$RNHCH_2CH_3 \xrightarrow{CH_3I} R \xrightarrow{+} N \xrightarrow{I^-} \xrightarrow{i) \text{ moist Ag}O} CH_2=CH_2 + RN(CH_3)_2$$

$$(2\text{moles})$$

(Note: A cyclic amine undergoes Hoffman's exhaustive methylation twice to give an amine and a diene).

**3.4** Compound **C** does not decolorise bromine and dissolves in HCl. **C** on treatment with conc. H<sub>2</sub>SO<sub>4</sub> gives **J**. Hoffman's exhaustive methylation of compound **J** gives 1, 3, 5-cycloheptatriene as one of the products. The possible structure /s for compound **C** is /are


(3 marks)

3.5 Compound C on controlled oxidation gives a compound K which gives a yellow precipitate with 2,4–DNP and also reacts with two equivalents of benzaldehyde in the presence of a base to give a dibenzylidine derivative, the general structure of such derivatives is shown below.

$$R$$
 $R$ 
 $R$ 
 $R$ 
 $H_5C_6$ 
 $C_6H_5$ 

The possible structure /s for compound C based on the above observations is /are

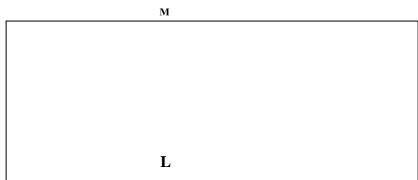
3.6



ii) For the structures **a-e** in **3.5** the compounds that are optically active are (Mark **X** in the correct box)

| a | b | c | d | e |
|---|---|---|---|---|
|   |   |   |   |   |

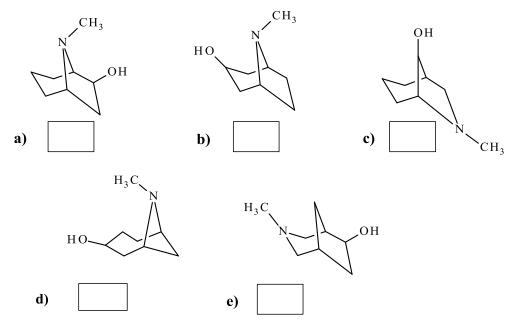
(1 mark)


Oxidation of  $\mathbf{C}$  with  $CrO_3$  gives dibasic acid  $\mathbf{L}$ .  $\mathbf{L}$  on heating with HI at 150-300 $^{\circ}$  C gives one mole of methyl iodide.

3.7 0.580 g of L is dissolved in 100cm³ of distilled water. 10cm³ of this diluted solution required 6.2 cm³ of 0.1 N KOH for neutralisation. Determine the molecular mass of L. Show all the steps in the calculation.

3.8 Write the molecular formula of compound L.

(1 mark)


3.9 Oxidation of L gives one of the products as M. Draw the structure of L.



(1 mark)


**3.10** Draw the possible tautomeric structure/s of **M**.

# 3.11 Based on all the observations from 3.4 -3.9 the structure of C is



(1 mark)

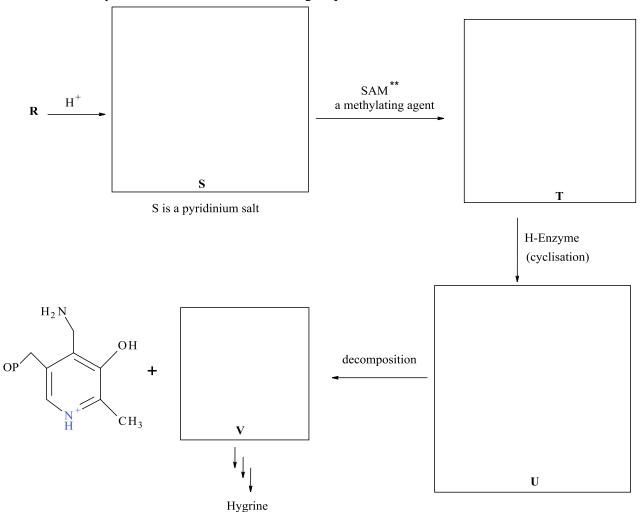
## **3.12** Draw the possible structure for alkaloid **A**.



In plant metabolism alkaloids are formed from amino acids. Alkaloid hygrine (N) is formed in nature from amino acid Ornithine (O)

$$\begin{array}{c|c} CH_3 \\ \hline \\ N \\ \hline \\ N \\ \end{array}$$

The first step in the synthesis is the pyridoxal catalysed decarboxylation of Ornithine.


# **3.13** Identify the missing intermediate **Q**.

CHO
PO
$$CH_3$$
 $COOH$ 

pyridoxal phosphate

 $COOH$ 
 $H_2$ 
 $OH$ 
 $OH$ 

**3.14** Identify **S**, **T**, **U** and **V** in the following sequence.



\*\*Note: Methylation using SAM takes place at the more nucleophilic nitrogen.

(3.5 marks)

3.15 Biosynthetic pathways are usually established by isotopic labeling of potential precursors. If ornithine is labeled with  $^{14}$ C at  $C_2$  and  $^{15}$ N at nitrogen on  $C_2$ , draw the structure of the hygrine obtained indicating the labeled atoms.

| Va     | me of Student Roll No                                                                                                                                                                                                                                                                                     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ob     | lem 4 15 marks                                                                                                                                                                                                                                                                                            |
| )<br>p | ications of Transition Metal Complexes                                                                                                                                                                                                                                                                    |
|        | The transition metals are widely distributed in earth's crust. The elements Co, Ir belong to Group IX of the periodic table. These elements as well as their compounds have several applications in chemistry. Cobalt and its compounds are used as catalysts and in making alloys, pigments and glasses. |
|        | Silica, on doping with an aqua complex of $Co(II)$ shows light pink colour in wet condition and deep blue colour in dry condition. This colour change is associated with the structural changes in the complex of $Co(II)$ due to partial loss of water.                                                  |
|        | Write the formula of the aqua complex of Co(II) that has pink colour.                                                                                                                                                                                                                                     |
|        |                                                                                                                                                                                                                                                                                                           |
|        | (0.5 mark)                                                                                                                                                                                                                                                                                                |
|        | With the above formula, write the balanced chemical equation for the reaction responsible for the observed colour change.                                                                                                                                                                                 |
|        | (1 mark)                                                                                                                                                                                                                                                                                                  |
|        | Mercuric tetrathiocyanatocobaltate (II) is another complex of cobalt, used as a                                                                                                                                                                                                                           |
|        | standard for calibrating magnetic balances. Its spin only magnetic moment is 3.872 Bohr magnetons.                                                                                                                                                                                                        |
|        | Write the formula of the complex.                                                                                                                                                                                                                                                                         |
|        |                                                                                                                                                                                                                                                                                                           |
|        | (0.5 mark)                                                                                                                                                                                                                                                                                                |
|        | Based on the magnetic moment <b>alone</b> , can the structure of the complex in <b>4.3</b> be predicted correctly to be tetrahedral or square planar?  Yes  No  (1 mark)                                                                                                                                  |
|        | (1 mark)                                                                                                                                                                                                                                                                                                  |

- **B.** An oxide of cobalt,  $Co_3O_4$  can exist **either** 
  - (a) as a normal spinel  $Co^{II}(Co_2^{III}O_4)$  where  $1/8^{th}$  of the tetrahedral holes are occupied by  $Co^{II}$  ions and  $1/4^{th}$  of the octahedral holes are occupied by  $Co^{III}$  ions in a cubic lattice, **or**
  - (b) as an inverted spinel where  $1/4^{th}$  of  $Co^{II}$  and  $Co^{III}$  exchange their sites.

|                  | Pairing energy P(cm <sup>-1</sup> ) | $\Delta_0(\mathrm{cm}^{\text{-}1})$ | $\Delta_{\rm t}({\rm cm}^{-1})$ |
|------------------|-------------------------------------|-------------------------------------|---------------------------------|
| Co <sup>3+</sup> | 20680                               | 20760                               | 9226                            |
| $Co^{2+}$        | 20800                               | 9200                                | 4090                            |

 $(\Delta_0 \, and \, \Delta_t \, imply$  the octahedral and tetrahedral splitting parameters respectively for oxygen as the ligand)

4.5 On the basis of the above data, calculate the crystal field stabilization energy (CFSE)

in kJ mol<sup>-1</sup> for i) a) cobalt (

- a) cobalt (III) in octahedral and b) cobalt (III) in tetrahedral sites.
- ii) a) cobalt (II) in octahedral and b) cobalt (II) in tetrahedral sites

(In actual calculations of CFSE values neglect the pairing energies)

(3 marks)

| cobalt (III) in octahedral and tetrahedral sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С  | alculate the difference of the CFSE values obtained in <b>4.5 i</b> ) and <b>4.5 ii</b> ). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------|
| Based on your above calculations, predict whether $Co_3O_4$ exists as a normal spinel an inverted spinel (0.5 mark)  The number of possible isomers for the complex of the type $[Co^{III}AX(et (en = ethylene diamine) is 2                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С  | obalt (III) in octahedral and tetrahedral sites                                            |
| Based on your above calculations, predict whether $Co_3O_4$ exists as a normal spinel an inverted spinel (0.5 mark)  The number of possible isomers for the complex of the type $[Co^{III}AX(er (en = ethylene diamine))]$ is 2 (1 mark)  Draw the possible structure(s) for the $cis$ and the $trans$ isomers of the above complex of the above complex of the above complex of the possible structure(s) for the $cis$ and the $trans$ isomers of the above complex of the above complex of the above complex of the above complex of the possible structure(s) for the $cis$ and the $trans$ isomers of the above complex of the above | С  | obalt (II) in octahedral and tetrahedral sites                                             |
| a normal spinel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | (1 mark)                                                                                   |
| (0.5 mark)  The number of possible isomers for the complex of the type [Co <sup>III</sup> AX(er (en = ethylene diamine) is  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В  | ased on your above calculations, predict whether Co <sub>3</sub> O <sub>4</sub> exists as  |
| The number of possible isomers for the complex of the type $[Co^{III}AX(ero)]$ (en = ethylene diamine) is  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a  |                                                                                            |
| (en = ethylene diamine) is  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T  |                                                                                            |
| (1 mark)  Draw the possible structure(s) for the <i>cis</i> and the <i>trans</i> isomers of the above com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                                            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2  |                                                                                            |
| (Represent en by $\cap$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D  | raw the possible structure(s) for the cis and the trans isomers of the above com           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (F | Represent en by $\cap$ ).                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | (1.5 marks)                                                                                |

Hydrolysis of the above complex (where  $\mathbf{X}$  is the leaving group) proceeds through dissociation mechanism. For the *trans* complex, the reaction proceeds via square pyramidal intermediate but for the *cis* complex it proceeds via trigonal bipyramidal intermediate.

- **4.10** For the trans form, the hydrolysis will result in
  - a) Only cis product

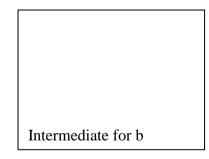
- b) only trans product
- c) Mixture of cis and trans product

(1 mark)

- **4.11** For the cis form, the hydrolysis will result in
  - a) Only cis product

- b) only trans product
- c) Mixture of cis and trans product

(1 mark)


C.

The complex  $[Ir^{\mathbf{I}}(CO)Cl(PPh_3)_2]$  was first synthesized by Lauri Vaska in 1961 and is known as Vaska's complex. It is a versatile catalyst for several reactions.

The addition of  $H_2$  to  $[Ir^I(CO)Cl(PPh_3)_2]$  is *cis*, but the addition of  $CH_3Cl$  is *trans*. The structures of the complex and the products are given below. These reactions go through intermediate states.

- a)  $Ph_3P$  I Cl  $H_2$   $PPh_3$
- Ph<sub>3</sub>P | H | H | OC | PPh<sub>3</sub>
- b)  $Ph_3P$  I Cl  $CH_3Cl^*$  OC  $PPh_3$
- Ph<sub>3</sub>P | Cl
  Ir
  OC | \* PPh<sub>3</sub>
- **4.12** (i) Draw the structures of the intermediates for the above addition reactions.

Intermediate for a



(2 marks)

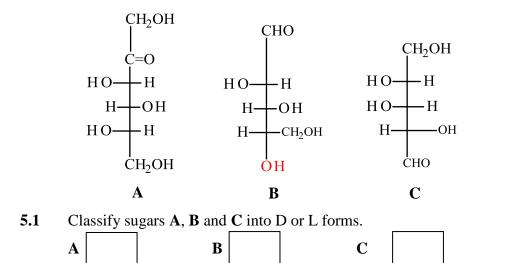
- (ii) State the oxidation number of Ir in the products.
  - a)

b)

| _   |  |  |  |
|-----|--|--|--|
| - 1 |  |  |  |
| - 1 |  |  |  |
| - 1 |  |  |  |
| - 1 |  |  |  |
| - 1 |  |  |  |
| - 1 |  |  |  |

|  | Name of Student | Roll No |
|--|-----------------|---------|
|--|-----------------|---------|

Problem 5 18 marks

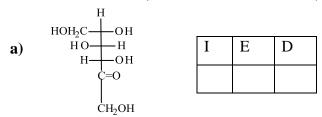

#### **Chemistry of Carbohydrates**

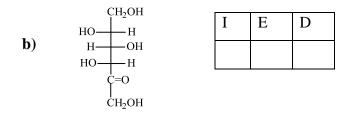
Carbohydrates are biomolecules which perform diverse functions such as being energy sources and constituents of nucleic acids. In solution, monosaccharides, the simplest unit of carbohydrates, exist in cyclic hemiacetal form. The cyclic form is in equilibrium with small quantity of the open chain form.

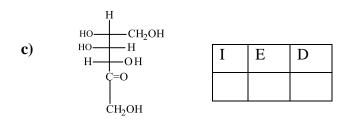
In a trivial system of naming (D,L-system), the carbohydrates having the configuration at the asymmetric carbon of highest number same as that of R-glyceraldehyde (shown below) are called D forms while those having opposite configuration at the same carbon are called L-forms.

#### R-glyceraldehyde

Monosacharides **A**,**B** and **C** have the following structures.

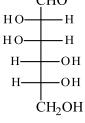




Some terms and their abbreviations are given below.

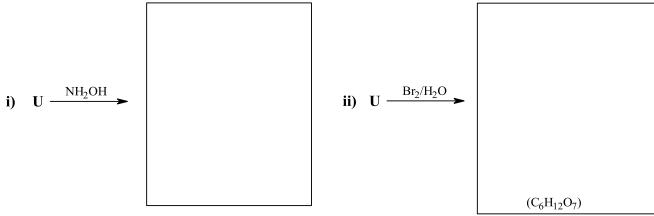

| Term         | Identical | Enantiomer | Diastereomer |
|--------------|-----------|------------|--------------|
| Abbreviation | I         | Е          | D            |

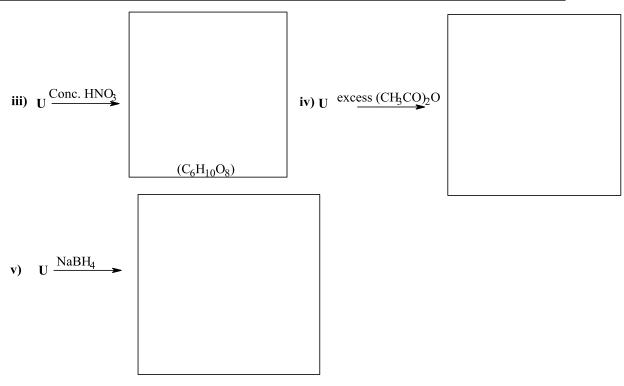
(1.5 marks)

5.2 i) Which is the correct term to describe the relationship of each of the following structure with A? (Mark X in the correct box)





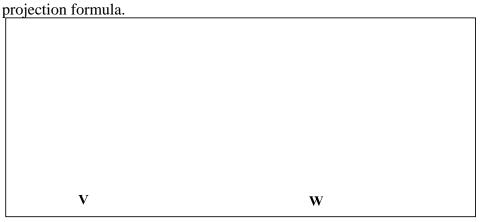


(3 marks)

5.3 a) Some reactions of a monosaccharide U are given below. Complete them by drawing the structures of the products with correct stereochemistry wherever applicable.




U






(2.5 marks)

b) Monosaccharide **U** react with phenylhydrazine in excess to yield a crystalline derivative called osazone.



Another aldose V and ketose W also give the same osazone as U on reaction with excess of phenylhydrazine. Draw the structure of V and W in the Fischer



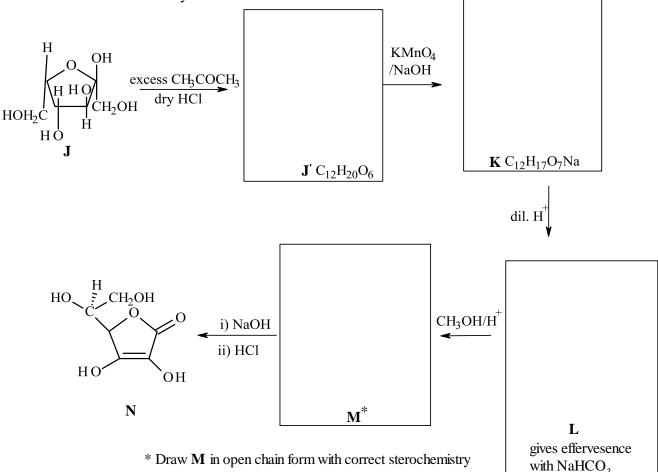
(1.5 marks)

1,2 – or 1,3 – diols can be protected by forming cyclic acetals with one equivalent of acetone in acidic conditions. These acetals are hydrolysed back to the original hydroxyl groups in dilute acid solutions.

**5.4** Draw the structure of the product **G** in the following reaction.

Compound N is a vital nutrient essential for the proper growth of the human body. It is commercially synthesized from monosaccharide H.

5.5 Draw the structure of the product **I** (with correct stereochemistry) in the first step of the synthesis of **N**.


I undergoes microbial oxidation to give J whose structure is given as follows

$$\mathbf{I} \longrightarrow \begin{array}{c} H \\ OH \\ HOH_2C \\ OH \\ \mathbf{J} \end{array}$$

5.6 In the conversion of **I** to **J**, which carbon of the original **H** is undergoing this oxidation? (Mark X in the correct box).

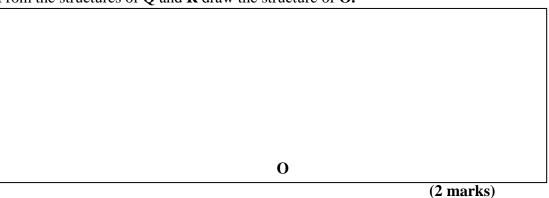
| (1 mark) |    |    |    |    |    |
|----------|----|----|----|----|----|
|          |    |    |    |    |    |
| C1       | C2 | C3 | C4 | C5 | C6 |

5.7 Complete the synthesis of **N** by drawing structures for **J'**, **K**, **L** and **M** with correct stereochemistry.



(3.5 marks)

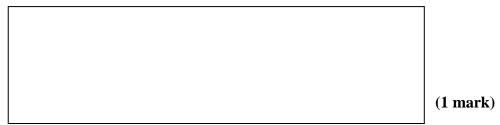
Monsaccharides and oligosaccharides that have a free – OH group on the anomeric carbon give a positive test for Tollen's reagent. Such sugars are called reducing sugars. If this free–OH group at the anomeric carbon is replaced by an ether then the result is a glycoside. The nonsugar part of a glycoside is called an aglycone. Both glycosides and oligosaccharides can be hydrolysed by acids or enzymes into their components.


A disaccharide  $O(C_{12}H_{22}O_{11})$  is reducing in nature. On hydrolysis by enzyme emulsin (which cleaves only  $\beta$  linkages) O gives H as the only product.

$$\begin{array}{c} \mathbf{O} \\ (C_{12}H_{22}O_{11}) \end{array} \longrightarrow \begin{array}{c} \mathbf{CHO} \\ \mathbf{H} - \mathbf{OH} \\ \mathbf{HO} - \mathbf{H} \\ \mathbf{H} - \mathbf{OH} \\ \mathbf{H} - \mathbf{OH} \\ \mathbf{CH_2OH} \end{array}$$

**O** undergoes the following reactions.

Н


5.8 From the structures of  $\mathbf{Q}$  and  $\mathbf{R}$  draw the structure of  $\mathbf{O}$ .



A glycoside S on careful hydrolysis with emulsin gives the disaccharide O and the aglycone T whose structure is shown below

$$\bigcup \hspace{-1em} \stackrel{OH}{\longrightarrow} \hspace{-1em} C \equiv N$$

5.9 Draw the structure of the glycoside **S** with the correct stereochemistry.



| Name of student | Roll No. |
|-----------------|----------|
| Problem 6       | 8 marks  |

# Chemical equilibria in quantitative analysis

A. Many metal ions can be precipitated from their aqueous solutions as sulphides using hydrogen sulphide, a weak dibasic acid. The concentration of the sulphide ions in the solution can be controlled by adjusting the pH of the solution and thus the separation of the metal ions from the mixture can be achieved.

Relevant data needed for calculations in different subparts is presented below.

Dissociation constants of H<sub>2</sub>S:

$$K_1 = 1 \times 10^{-9}$$
 and  $K_2 = 1.3 \times 10^{-14}$ 

| Salt                                  | CdS                   | Tl <sub>2</sub> S     |
|---------------------------------------|-----------------------|-----------------------|
| Solubility product (K <sub>sp</sub> ) | 1.0×10 <sup>-27</sup> | $6.0 \times 10^{-22}$ |

- **6.1** Solid NaOH is added to 1L of 0.05M solution of  $H_2S$  until the pH reached the value of 12.0. Calculate-
  - (i) Initial pH of H<sub>2</sub>S solution before the addition of solid NaOH.
  - (ii) Concentration of all the species at pH =12.0 (Use appropriate approximations).
  - (iii) Total mass of solid NaOH added to the solution.

(3 marks)

A sample solution contains 0.003M each of  $Cd^{+2}$  ions and  $Tl^{+1}$  ions. The mixture needs to be separated using  $H_2S$  at appropriate pH. The separation is assumed to be quantitatively complete when the concentration of  $Cd^{+2}$  ions in the sample solution becomes  $1\times10^{-6}$  of the initial value.

(2 marks)

- **B.** Volhard method is a back titration method and involves excess addition of AgNO<sub>3</sub> and its back titration with potassium thiocyanate using ferric alum as the indicator. The end point is the appearance of a reddish brown colour due to the formation of iron thiocyanate complex.
- 6.3 10g of pesticide sample containing arsenic was treated appropriately to convert its arsenic content to AsO<sub>4</sub><sup>3-</sup>. Then 25mL of 0.045M AgNO<sub>3</sub> was added to precipitate AsO<sub>4</sub><sup>3-</sup> as Ag<sub>3</sub>AsO<sub>4</sub>. The precipitate was filtered and the **unreacted** AgNO<sub>3</sub> present in the filtrate was then titrated with 0.05M potassium thiocyanate. The observed titre value was 5.0 mL. Calculate the percentage of arsenic as AsO<sub>4</sub><sup>3-</sup> in the pesticide sample.

| (3 marks) |
|-----------|

## **Frozen Solutions**

Problem 1 17 marks

# Metallurgy

1.1 
$$4 \text{ Au} + 8 \text{ KCN} + \text{O}_2 + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ K}[\text{Au}(\text{CN})_2] + 4 \text{ KOH}$$

1.4 
$$Au(CN)_2]^{-1} = 0.00847$$

$$Ag(CN)_2]^{-1} = 0.09153$$

Reduction: 
$$3[NO_3]^{-1} (aq) + 6 H^+ (aq) + 3e^- \rightarrow 3NO_2(g) + 3H_2O(l)$$

Oxidation:  $Au(s) \rightarrow Au^{3+}(aq) + 3e^-$ 

$$Au^{3+} (aq) + 4Cl^{-1} (aq) \rightarrow AuCl_4^{-1}(aq)$$

**1.6** i) c) 
$$\Delta G^0 = \Delta H^0 - T\Delta S^0$$

X

- ii) c) the standard entropy change of the above reaction is zero.
- X
- iii) b) the standard entropy change of the above reaction is negative

X

iv) a) 750°C

X

v) a)  $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ 

X

vi) a) below 2200°C

X

1.7 
$$C(s) + 3/2 O_2(g) = 3/2 CO_2(g)$$
 or  $2Al_2O_3(s) + 3C(s) = 4Al(s) + 3CO_2(s)$ 

- 4.1433 % of sodium fluoride should be added.
- 1.9 i) The energy consumed will be =  $5.07 \times 10^9$  J.
  - ii) g of  $CO_2$  per hour =  $7.02 \times 10^4$  g

## Problem 2 15 Marks

### **Energy storage devises**

#### A. Hydrogen storage as metal hydrides

2.3 
$$LiH + HCl \rightarrow LiCl + H_2 \uparrow$$

$$LiH = 1.048 g$$

2.4 
$$p = 119.85 \times 10^{-4} \text{ Pa} = 11.9 \text{ bar}$$

2.5 
$$\Delta H^{\circ} = -36.1 \,\text{kJ mol}^{-1}$$

2.6 (a) 
$$C_{12} H_{22}O_{11}(aq) + 13H_2O \rightarrow 12 CO_2(g) + 48H^+ + 48e^-$$

$$VO^{2+}(aq) + 2 H^+(aq) + e \rightarrow V^{3+}(aq) + H_2O(l)$$
(b)  $VO^{2+}(aq) \rightarrow VO_2^+(aq) + 2H^+(aq) + e^-$ 

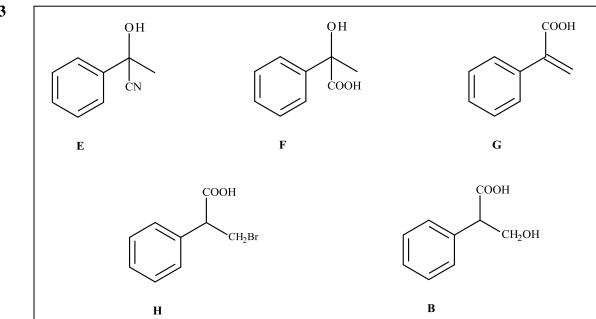
$$O_2(g) + 4H^+(g) + 4e^- \rightarrow 2H_2O(l)$$

2.7 
$$V(air) = 0.041L$$

2.8 
$$Y = -0.27 \text{ V}$$
  $X = 0.36 \text{ V}$ 

2.9 
$$[VO^{2+}] = 1.996$$
  $[VO_{2}^{+}] = [V^{3+}] = 4 \times 10^{-3}$ 

# Problem 3 25 marks


## **ALKALOIDS**

- **3.1 a)** B has a hydroxyl group
- X
- c) B has a carboxyl group
- X
- **d)** B is an aromatic compound
- X

- 3.2
- **a**) X

- b)
- X

3.3



3.4 a) X

**b**) X

**d**) X

3.5 b) X

**d**) X

- 3.6 a)
- **a**) 3
- **b**) 2
- or
- **a**) 4
- **b**) 3

b)

| a | b | c | d | e |
|---|---|---|---|---|
| X | X | X | X | X |

3.7

187

3.8 C<sub>8</sub>H<sub>13</sub>NO<sub>4</sub>

3.9 CH<sub>3</sub>
HOOC N CH<sub>2</sub>COOH

3.10 CH<sub>3</sub> CH<sub>3</sub> OH

3.11 b) X

3.12 O CH<sub>3</sub>
HOH<sub>2</sub>C

3.13  $\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$ 

$$H_2N$$
 $N$ 
 $OP$ 
 $N$ 
 $CH_3$ 
 $S$ 

## Problem 4 15 marks

## **Applications of Transition Metal Complexes**

- 4.1  $[Co(H_2O)_6]^{2+}$
- 4.2  $\left[\text{Co}(\text{H}_2\text{O})_6\right]^{2+} \xrightarrow{\Delta} \left[\text{Co}(\text{H}_2\text{O})_4\right]^{2+} + 2\text{H}_2\text{O}$
- **4.3** Hg[Co(SCN)<sub>4</sub>]
- **4.4** Yes X
- The CFSE of Co (III) in octahedral sites = 592.90 kJ mol<sup>-1</sup>
  The CFSE of Co (III) in tetrahedral sites = 65.8 kJ mol<sup>-1</sup>
  The CFSE of Co (II) in octahedral sites = 87.58 kJ mol<sup>-1</sup>
  The CFSE of Co (II) in tetrahedral sites = 58.40 kJ mol<sup>-1</sup>
- The difference of CFSE for Co(III) in octahedral and tetrahedral site is = 527.10 kJ mol<sup>-1</sup>
  The difference of CFSE for Co(II) in octahedral and tetrahedral site is = 29.18 kJ mol<sup>-1</sup>
- **4.7** A normal spinel X
- **4.8** 3 X
- 4.9

  A

  X

  Co

  Co

  X

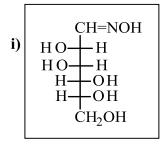
  trans
- **4.10** only trans product X
- **4.11** Mixture of cis and trans product X
- - ii) a) +3 b) +3

### **Chemistry of Carbohydrates**

 $\mathbf{B}$ 

X

**5.2** a) Diastereomer


r X

- b) Enantiomer
- c) Identical

X

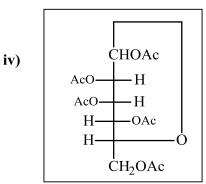
18 marks

5.3 a)



COOH
HO—H
HO—H
H—OH
H—OH
CH<sub>2</sub>OH
(C<sub>6</sub>H<sub>12</sub>O<sub>7</sub>)

COOH


HO—H

HO—H

H—OH

H—OH

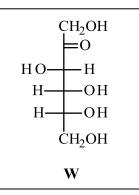
COOH



CH<sub>2</sub>OH

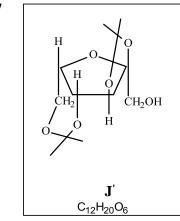
HO—H

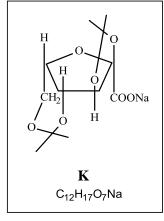
HO—H

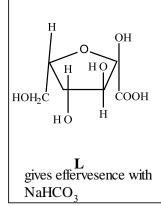

H—OH

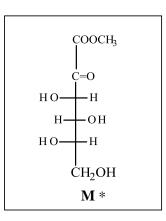
H—OH

CH<sub>2</sub>OH

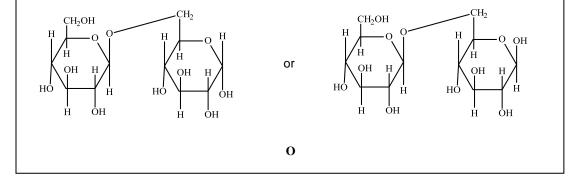

CHO
H—OH
HO—H
H—OH
CH<sub>2</sub>OH


 $(C_6H_{10}O_8)$ 





**5.6** C5 X

**5.7** 










5.8



#### 8 marks

#### Chemical equilibria in quantitative analysis

(i) 
$$pH = 5.15$$

(ii) At 
$$pH = 12.0$$
,

$$[H^+] = 10^{-12} \text{ M}, [HS^-] = 0.05; [H_2S] = 5 \times 10^{-5}, [S^{2-}] = 6.5 \times 10^{-4}, [OH^-] = 10^{-2}$$

- (iii) Mass of NaOH added = 2.452g
- **6.2** pH range = 2.7 to 3.85
- **6.3** % of  $AsO_4^{3-}$  in 10g of the pesticide sample = 0.405%

#### **Frozen Solutions**

Problem 1 17 marks

#### Metallurgy

1.1 
$$4 \text{ Au} + 8 \text{ KCN} + \text{O}_2 + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ K}[\text{Au}(\text{CN})_2] + 4 \text{ KOH}$$

1.4 
$$Au(CN)_2]^{-1} = 0.00847$$

$$Ag(CN)_2]^{-1} = 0.09153$$

Reduction: 
$$3[NO_3]^{-1} (aq) + 6 H^+ (aq) + 3e^- \rightarrow 3NO_2(g) + 3H_2O(l)$$

Oxidation:  $Au(s) \rightarrow Au^{3+}(aq) + 3e^-$ 

$$Au^{3+} (aq) + 4Cl^{-1} (aq) \rightarrow AuCl_4^{-1}(aq)$$

**1.6** i) c) 
$$\Delta G^0 = \Delta H^0 - T\Delta S^0$$

X

- ii) c) the standard entropy change of the above reaction is zero.
- X
- iii) b) the standard entropy change of the above reaction is negative

X

iv) a) 750°C

X

v) a)  $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ 

X

vi) a) below 2200°C

X

1.7 
$$C(s) + 3/2 O_2(g) = 3/2 CO_2(g)$$
 or  $2Al_2O_3(s) + 3C(s) = 4Al(s) + 3CO_2(s)$ 

- 4.1433 % of sodium fluoride should be added.
- 1.9 i) The energy consumed will be =  $5.07 \times 10^9$  J.
  - ii) g of  $CO_2$  per hour =  $7.02 \times 10^4$  g

## Problem 2 15 Marks

### **Energy storage devises**

#### A. Hydrogen storage as metal hydrides

2.3 
$$LiH + HCl \rightarrow LiCl + H_2 \uparrow$$

$$LiH = 1.048 g$$

2.4 
$$p = 119.85 \times 10^{-4} \text{ Pa} = 11.9 \text{ bar}$$

2.5 
$$\Delta H^{\circ} = -36.1 \,\text{kJ mol}^{-1}$$

2.6 (a) 
$$C_{12} H_{22}O_{11}(aq) + 13H_2O \rightarrow 12 CO_2(g) + 48H^+ + 48e^-$$

$$VO^{2+}(aq) + 2 H^+(aq) + e \rightarrow V^{3+}(aq) + H_2O(l)$$
(b)  $VO^{2+}(aq) \rightarrow VO_2^+(aq) + 2H^+(aq) + e^-$ 

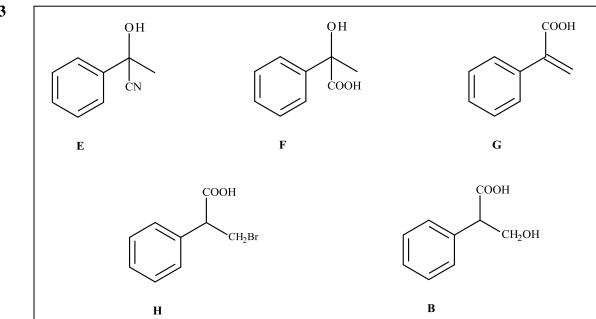
$$O_2(g) + 4H^+(g) + 4e^- \rightarrow 2H_2O(l)$$

2.7 
$$V(air) = 0.041L$$

2.8 
$$Y = -0.27 \text{ V}$$
  $X = 0.36 \text{ V}$ 

2.9 
$$[VO^{2+}] = 1.996$$
  $[VO_{2}^{+}] = [V^{3+}] = 4 \times 10^{-3}$ 

# Problem 3 25 marks


## **ALKALOIDS**

- **3.1 a)** B has a hydroxyl group
- X
- c) B has a carboxyl group
- X
- **d)** B is an aromatic compound
- X

- 3.2
- **a**) X

- b)
- X

3.3



3.4 a) X

**b**) X

**d**) X

3.5 b) X

**d**) X

- 3.6 a)
- **a**) 3
- **b**) 2
- or
- **a**) 4
- **b**) 3

b)

| a | b | c | d | e |
|---|---|---|---|---|
| X | X | X | X | X |

3.7

187

3.8 C<sub>8</sub>H<sub>13</sub>NO<sub>4</sub>

3.9 CH<sub>3</sub>
HOOC N CH<sub>2</sub>COOH


3.10 CH<sub>3</sub> CH<sub>3</sub> OH

3.11 b) X

3.12 O CH<sub>3</sub>
HOH<sub>2</sub>C

3.13  $\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$ 

$$H_2N$$
 $OP$ 
 $OH$ 
 $CH_3$ 
 $S$ 



## Problem 4 15 marks

## **Applications of Transition Metal Complexes**

- 4.1  $[Co(H_2O)_6]^{2+}$
- 4.2  $\left[\text{Co}(\text{H}_2\text{O})_6\right]^{2+} \xrightarrow{\Delta} \left[\text{Co}(\text{H}_2\text{O})_4\right]^{2+} + 2\text{H}_2\text{O}$
- **4.3** Hg[Co(SCN)<sub>4</sub>]
- **4.4** Yes X
- The CFSE of Co (III) in octahedral sites = 592.90 kJ mol<sup>-1</sup>
  The CFSE of Co (III) in tetrahedral sites = 65.8 kJ mol<sup>-1</sup>
  The CFSE of Co (II) in octahedral sites = 87.58 kJ mol<sup>-1</sup>
  The CFSE of Co (II) in tetrahedral sites = 58.40 kJ mol<sup>-1</sup>
- The difference of CFSE for Co(III) in octahedral and tetrahedral site is = 527.10 kJ mol<sup>-1</sup>
  The difference of CFSE for Co(II) in octahedral and tetrahedral site is = 29.18 kJ mol<sup>-1</sup>
- **4.7** A normal spinel X
- **4.8** 3 X
- 4.9

  A

  X

  Co

  Co

  X

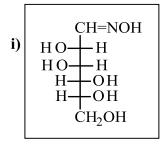
  trans
- **4.10** only trans product X
- **4.11** Mixture of cis and trans product X
- - ii) a) +3 b) +3

### **Chemistry of Carbohydrates**

 $\mathbf{B}$ 

X

**5.2** a) Diastereomer


r X

- b) Enantiomer
- c) Identical

X

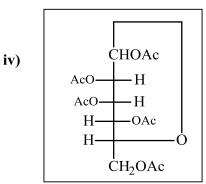
18 marks

5.3 a)



COOH
HO—H
HO—H
H—OH
H—OH
CH<sub>2</sub>OH
(C<sub>6</sub>H<sub>12</sub>O<sub>7</sub>)

COOH


HO—H

HO—H

H—OH

H—OH

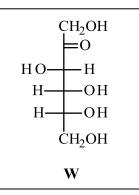
COOH



CH<sub>2</sub>OH

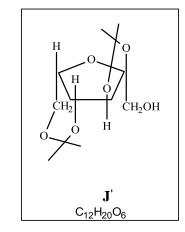
HO—H

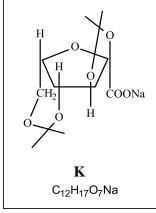
HO—H

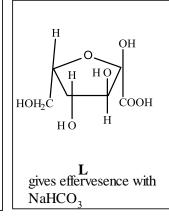

H—OH

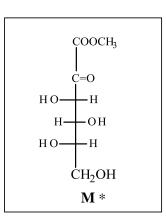
H—OH

CH<sub>2</sub>OH

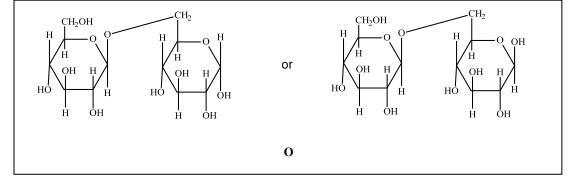

CHO
H—OH
HO—H
H—OH
CH<sub>2</sub>OH


 $(C_6H_{10}O_8)$ 





**5.6** C5 X

**5.7** 










5.8



#### 8 marks

#### Chemical equilibria in quantitative analysis

6.1

(i) 
$$pH = 5.15$$

(ii) At 
$$pH = 12.0$$
,

$$[H^{+}] = 10^{-12} \text{ M}, [HS^{-}] = 0.05; [H_{2}S] = 5 \times 10^{-5}, [S^{2-}] = 6.5 \times 10^{-4}, [OH^{-}] = 10^{-2}$$

- (iii) Mass of NaOH added = 2.452g
- **6.2**

pH range = 
$$2.7$$
 to  $3.85$ 

6.3

% of  $AsO_4^{3-}$  in 10g of the pesticide sample = 0.405%