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31st Indian National Mathematical Olympiad-2016

Time: 4 hours January 17, 2016

Instructions:

• Calculators (in any form) and protractors are not allowed.

• Rulers and compasses are allowed.

• Answer all the questions. Maximum marks: 100.

• Answer to each question should start on a new page. Clearly indicate
the question number.

1. Let ABC be triangle in which AB = AC. Suppose the orthocentre of the
triangle lies on the incircle. Find the ratio AB/BC.

2. For positive real numbers a, b, c, which of the following statements
necessarily implies a = b = c: (I) a(b3 + c3) = b(c3 + a3) = c(a3 + b3),
(II) a(a3 + b3) = b(b3 + c3) = c(c3 + a3) ? Justify your answer.

3. Let N denote the set of all natural numbers. Define a function T : N → N by
T (2k) = k and T (2k + 1) = 2k + 2. We write T 2(n) = T (T (n)) and in general
T k(n) = T k−1(T (n)) for any k > 1.

(i) Show that for each n ∈ N, there exists k such that T k(n) = 1.

(ii) For k ∈ N, let ck denote the number of elements in the set {n : T k(n) = 1}.
Prove that ck+2 = ck+1 + ck, for k ≥ 1.

4. Suppose 2016 points of the circumference of a circle are coloured red and the
remaining points are coloured blue. Given any natural number n ≥ 3, prove
that there is a regular n-sided polygon all of whose vertices are blue.

5. Let ABC be a right-angled triangle with ∠B = 90◦. Let D be a point on AC
such that the inradii of the triangles ABD and CBD are equal. If this common
value is r′ and if r is the inradius of triangle ABC, prove that

1

r′
=

1

r
+

1

BD
.

6. Consider a nonconstant arithmetic progression a1, a2, . . . , an, . . .. Suppose there
exist relatively prime positive integers p > 1 and q > 1 such that a21, a2p+1 and
a2q+1 are also the terms of the same arithmetic progression. Prove that the terms
of the arithmetic progression are all integers.

———-000000———-
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INMO-2016 problems and solutions

1. Let ABC be triangle in which AB = AC. Suppose the orthocentre of the triangle lies on the
in-circle. Find the ratio AB/BC.

Solution: Since the triangle is isosceles, the or-
thocentre lies on the perpendicular AD from A on
to BC. Let it cut the in-circle at H. Now we are
given that H is the orthocentre of the triangle.
Let AB = AC = b and BC = 2a. Then BD = a.
Observe that b > a since b is the hypotenuse and
a is a leg of a right-angled triangle. Let BH meet
AC in E and CH meet AB in F . By Pythagoras
theorem applied to 4BDH, we get

BH2 = HD2 +BD2 = 4r2 + a2,

where r is the in-radius of ABC. We want to compute BH in another way. Since A,F,H,E are

con-cyclic, we have
BH ·BE = BF ·BA.

But BF ·BA = BD ·BC = 2a2, since A,F,D,C are con-cyclic. Hence BH2 = 4a4/BE2. But

BE2 = 4a2 − CE2 = 4a2 −BF 2 = 4a2 −
(

2a2

b

)2

=
4a2(b2 − a2)

b2
.

This leads to

BH2 =
a2b2

b2 − a2
.

Thus we get
a2b2

b2 − a2
= a2 + 4r2.

This simplifies to (a4/(b2 − a2)) = 4r2. Now we relate a, b, r in another way using area. We know
that [ABC] = rs, where s is the semi-perimeter of ABC. We have s = (b+ b+ 2a)/2 = b+ a. On
the other hand area can be calculated using Heron’s formula::

[ABC]2 = s(s− 2a)(s− b)(s− b) = (b+ a)(b− a)a2 = a2(b2 − a2).

Hence

r2 =
[ABC]2

s2
=
a2(b2 − a2)

(b+ a)2
.

Using this we get
a4

b2 − a2
= 4

(
a2(b2 − a2)

(b+ a)2

)
.

Therefore a2 = 4(b− a)2, which gives a = 2(b− a) or 2b = 3a. Finally,

AB

BC
=

b

2a
=

3

4
.
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Alternate Solution 1:

We use the known facts BH = 2R cosB and r = 4R sin(A/2) sin(B/2) sin(C/2), where R is the
circumradius of 4ABC and r its in-radius. Therefore

HD = BH sin∠HBD = 2R cosB sin
(π

2
− C

)
= 2R cos2B,

since ∠C = ∠B. But ∠B = (π − ∠A)/2, since ABC is isosceles. Thus we obtain

HD = 2R cos2
(
π

2
− A

2

)
.

However HD is also the diameter of the in circle. Therefore HD = 2r. Thus we get

2R cos2
(
π

2
− A

2

)
= 2r = 8R sin(A/2) sin2((π −A)/4).

This reduces to
sin(A/2) = 2 (1− sin(A/2)) .

Therefore sin(A/2) = 2/3. We also observe that sin(A/2) = BD/AB. Finally

AB

BC
=

AB

2BD
=

1

2 sin(A/2)
=

3

4
.

Alternate Solution 2:

Let D be the mid-point of BC. Extend AD to meet the circumcircle in L. Then we know that
HD = DL. But HD = 2r. Thus DL = 2r. Therefore IL = ID+DL = r+ 2r = 3r. We also know
that LB = LI. Therefore LB = 3r. This gives

BL

LD
=

3r

2r
=

3

2
.

But 4BLD is similar to 4ABD. So

AB

BD
=
BL

LD
=

3

2
.

Finally,
AB

BC
=

AB

2BD
=

3

4
.

Alternate Solution 3:

Let D be the mid-point of BC and E be the mid-point of DC. Since DI = IH(= r) and DE = EC,
the mid-point theorem implies that IE ‖ CH. But CH ⊥ AB. Therefore EI ⊥ AB. Let EI meet
AB in F . Then F is the point of tangency of the incircle of 4ABC with AB. Since the incircle is
also tangent to BC at D, we have BF = BD. Observe that 4BFE is similar to 4BDA. Hence

AB

BD
=
BE

BF
=
BE

BD
=
BD +DE

BD
= 1 +

DE

BD
=

3

2
.

This gives
AB

BC
=

3

4
.
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2. For positive real numbers a, b, c, which of the following statements
necessarily implies a = b = c: (I) a(b3 + c3) = b(c3 + a3) = c(a3 + b3),
(II) a(a3 + b3) = b(b3 + c3) = c(c3 + a3) ? Justify your answer.

Solution: We show that (I) need not imply that a = b = c where as (II) always implies a = b = c.

Observe that a(b3 + c3) = b(c3 + a3) gives c3(a − b) = ab(a2 − b2). This gives either a = b or
ab(a+ b) = c3. Similarly, b = c or bc(b+ c) = a3. If a 6= b and b 6= c, we obtain

ab(a+ b) = c3, bc(b+ c) = a3.

Therefore
b(a2 − c2) + b2(a− c) = c3 − a3.

This gives (a− c)(a2 + b2 + c2 + ab+ bc+ ca) = 0. Since a, b, c are positive, the only possibility is
a = c. We have therefore 4 possibilities: a = b = c; a 6= b, b 6= c and c = a; b 6= c, c 6= a and a = b;
c 6= a, a 6= b and b = c.

Suppose a = b and b, a 6= c. Then b(c3 + a3) = c(a3 + b3) gives ac3 + a4 = 2ca3. This implies that
a(a − c)(a2 − ac − c2) = 0. Therefore a2 − ac − c2 = 0. Putting a/c = x, we get the quadratic
equation x2 − x− 1 = 0. Hence x = (1 +

√
5)/2. Thus we get

a = b =

(
1 +
√

5

2

)
c, c arbitrary positive real number.

Similarly, we get other two cases:

b = c =

(
1 +
√

5

2

)
a, a arbitrary positive real number;

c = a =

(
1 +
√

5

2

)
b, b arbitrary positive real number.

And a = b = c is the fourth possibility.

Consider (II): a(a3 + b3) = b(b3 + c3) = c(c3 + a3). Suppose a, b, c are mutually distinct. We may
assume a = max{a, b, c}. Hence a > b and a > c. Using a > b, we get from the first relation that
a3 + b3 < b3 + c3. Therefore a3 < c3 forcing a < c. This contradicts a > c. We conclude that a, b, c
cannot be mutually distinct. This means some two must be equal. If a = b, the equality of the first
two expressions give a3 + b3 = b3 + c3 so that a = c. Similarly, we can show that b = c implies b = a
and c = a gives c = b.

Alternate for (II) by a contestant: We can write

a3

c
+
b3

c
=

c3

a
+ a2,

b3

a
+
c3

a
=

a3

b
+ b2,

c3

b
+
a3

b
=

b3

c
+ c2.

Adding, we get
a3

c
+
b3

a
+
c3

b
= a2 + b2 + c2.
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Using C-S inequality, we have

(a2 + b2 + c2)2 =

(√
a3√
c
·
√
ac+

√
b3√
a
·
√
ba+

√
c3√
b
·
√
cb

)2

≤
(
a3

c
+
b3

a
+
c3

b

)(
ac+ ba+ cb

)
= (a2 + b2 + c2)(ab+ bc+ ca).

Thus we obtain
a2 + b2 + c2 ≤ ab+ bc+ ca.

However this implies (a− b)2 + (b− c)2 + (c− a)2 ≤ 0 and hence a = b = c.

3. Let N denote the set of all natural numbers. Define a function T : N → N by T (2k) = k and
T (2k+ 1) = 2k+ 2. We write T 2(n) = T (T (n)) and in general T k(n) = T k−1(T (n)) for any k > 1.

(i) Show that for each n ∈ N, there exists k such that T k(n) = 1.

(ii) For k ∈ N, let ck denote the number of elements in the set {n : T k(n) = 1}. Prove that
ck+2 = ck+1 + ck, for k ≥ 1.

Solution:

(i) For n = 1, we have T (1) = 2 and T 2(1) = T (2) = 1. Hence we may assume that n > 1.

Suppose n > 1 is even. Then T (n) = n/2. We observe that (n/2) ≤ n− 1 for n > 1.

Suppose n > 1 is odd so that n ≥ 3. Then T (n) = n+ 1 and T 2(n) = (n+ 1)/2. Again we see that
(n+ 1)/2 ≤ (n− 1) for n ≥ 3.

Thus we see that in at most 2(n− 1) steps T sends n to 1. Hence k ≤ 2(n− 1). (Here 2(n− 1) is
only a bound. In reality, less number of steps will do.)

(ii) We show that cn = fn+1, where fn is the n-th Fibonacci number.

Let n ∈ N and let k ∈ N be such that T k(n) = 1. Here n can be odd or even. If n is even, it can
be either of the form 4d+ 2 or of the form 4d.

If n is odd, then 1 = T k(n) = T k−1(n+ 1). (Observe that k > 1; otherwise we get n+ 1 = 1 which
is impossible since n ∈ N.) Here n+ 1 is even.

If n = 4d+ 2, then again 1 = T k(4d+ 2) = T k−1(2d+ 1). Here 2d+ 1 = n/2 is odd.

Thus each solution of T k−1(m) = 1 produces exactly one solution of T k(n) = 1 and n is either odd
or of the form 4d+ 2.

If n = 4d, we see that 1 = T k(4d) = T k−1(2d) = T k−2(d). This shows that each solution of
T k−2(m) = 1 produces exactly one solution of T k(n) = 1 of the form 4d.

Thus the number of solutions of T k(n) = 1 is equal to the number of solutions of T k−1(m) = 1 and
the number of solutions of T k−2(l) = 1 for k > 2. This shows that ck = ck−1 + ck−2 for k > 2. We
also observe that 2 is the only number which goes to 1 in one step and 4 is the only number which
goes to 1 in two steps. Hence c1 = 1 and c2 = 2. This proves that cn = fn+1 for all n ∈ N.

4. Suppose 2016 points of the circumference of a circle are coloured red and the remaining points are
coloured blue. Given any natural number n ≥ 3, prove that there is a regular n-sided polygon all
of whose vertices are blue.

Solution: Let A1, A2, . . . , A2016 be 2016 points on the circle which are coloured red and the remain-
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ing blue. Let n ≥ 3 and let B1, B2, . . . , Bn be a regular n-sided polygon inscribed in this circle with
the vertices chosen in anti-clock-wise direction. We place B1 at A1. (It is possible, in this position,
some other B’s also coincide with some other A’s.) Rotate the polygon in anti-clock-wise direction
gradually till some B’s coincide with (an equal number of) A’s second time. We again rotate the
polygon in the same direction till some B’s coincide with an equal number of A’s third time, and
so on until we return to the original position, i.e., B1 at A1. We see that the number of rotations
will not be more than 2016× n, that is, at most these many times some B’s would have coincided
with an equal number of A’s. Since the interval (0, 360◦) has infinitely many points, we can find a
value α

◦ ∈ (0, 360◦) through which the polygon can be rotated from its initial position such that
no B coincides with any A. This gives a n-sided regular polygon having only blue vertices.

Alternate Solution: Consider a regular 2017 × n-gon on the circle; say, A1A2A3 · · ·A2017n. For

each j, 1 ≤ j ≤ 2017, consider the points {Ak : k ≡ j (mod 2017)}. These are the vertices of
a regular n-gon, say Sj . We get 2017 regular n-gons; S1, S2, . . . , S2017. Since there are only 2016
red points, by pigeon-hole principle there must be some n-gon among these 2017 which does not
contain any red point. But then it is a blue n-gon.

5. Let ABC be a right-angled triangle with ∠B = 90◦. Let D be a point on AC such that the in-radii
of the triangles ABD and CBD are equal. If this common value is r′ and if r is the in-radius of
triangle ABC, prove that

1

r′
=

1

r
+

1

BD
.

Solution: Let E and F be the incentres of tri-
angles ABD and CBD respectively. Let the in-
circles of triangles ABD and CBD touch AC in
P and Q respectively. If ∠BDA = θ, we see that

r′ = PD tan(θ/2) = QD cot(θ/2).

Hence

PQ = PD +QD = r′
(

cot
θ

2
+ tan

θ

2

)
=

2r′

sin θ
.

But we observe that

DP =
BD +DA−AB

2
, DQ =

BD +DC −BC
2

.

Thus PQ = (b− c− a+ 2BD)/2. We also have

ac

2
= [ABC] = [ABD] + [CBD] = r′

(AB +BD +DA)

2
+ r′

(CB +BD +DC)

2

= r′
(c+ a+ b+ 2BD)

2
= r′(s+BD).

But

r′ =
PQ sin θ

2
=
PQ · h
2BD

,

where h is the altitude from B on to AC. But we know that h = ac/b. Thus we get

ac = 2× r′(s+BD) = 2× PQ · h
2×BD

(s+BD) =
(b− c− a+ 2BD)ca(s+BD)

2×BD × b
.
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Thus we get
2×BD × b = 2×

(
BD − (s− b))(s+BD).

This gives BD2 = s(s− b). Since ABC is a right-angled triangle r = s− b. Thus we get BD2 = rs.
On the other hand, we also have [ABC] = r′(s+BD). Thus we get

rs = [ABC] = r′(s+BD).

Hence
1

r′
=

1

r
+
BD

rs
=

1

r
+

1

BD
.

Alternate Solution 1: Observe that

r′

r
=
AP

AX
=
CQ

CX
=
AP + CQ

AC
,

where X is the point at which the incircle of ABC touches the side AC. If s1 and s2 are respectively
the semi-perimeters of triangles ABD and CBD, we know AP = s1 − BD and CQ = s2 − BD.
Therefore

r′

r
=

(s1 −BD) + (s2 −BD)

AC
=
s1 + s2 − 2BD

b
.

But

s1 + s2 =
AD +BD + c

2
+
CD +BD + a

2
=

(a+ b+ c) + 2BD

2
=
s+BD

2
.

This gives
r′

r
=
s+BD − 2BD

b
=
s−BD

b
.

We also have

r′ =
[ABD]

s1
=

[CBD]

s2
=

[ABD] + [CBD]

s1 + s2
=

[ABC]

s+BD
=

rs

s+BD
.

This implies that
r′

r
=

s

s+BD
.

Comparing the two expressions for r′/r, we see that

s−BD
b

=
s

s+BD
.

Therefore s2 −BD2 = bs, or BD2 = s(s− b). Thus we get BD =
√
s(s− b).

We know now that

r′

r
=

s

s+BD
=
s−BD

b
=

BD

(s− b) +BD
=

√
s(s− b)

(s− b) +
√
s(s− b)

=

√
s√

s− b+
√
s
.

Therefore
r

r′
= 1 +

√
s− b
s

.

This gives

1

r′
=

1

r
+

(√
s− b
s

)
1

r
.
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But (√
s− b
s

)
1

r
=

(
s− b√
s(s− b)

)
1

r
=

(
s− b
BD

)
1

r
.

If ∠B = 90◦, we know that r = s− b. Therfore we get

1

r′
=

1

r
+

(
s− b
BD

)
1

r
=

1

r
+

1

BD
.

Alternate Solution 2 by a contestant: Ob-
serve that ∠EDF = 90◦. Hence4EDP is similar
to 4DFQ. Therefore DP ·DQ = EP ·FQ. Tak-
ing DP = y1 and DQ = x1, we get x1y1 = (r′)2.
We also observe that BD = x1 + x2 = y1 + y2.
Since ∠EBF = 45◦, we get

1 = tan 45◦ = tan(β1 + β2) =
tanβ1 + tanβ2

1− tanβ1 tanβ2
.

But tanβ1 = r′/y2 and tanβ2 = r′/x2. Hence we obtain

1 =
(r′/y2) + (r′/x2)

1− (r′)2/x2y2
.

Solving for r′, we get

r′ =
x2y2 − x1y1
x2 + y2

.

We also know

r =
AB +BC −AC

2
=
x2 + y2 − (x1 + y1)

2
=

(x2 − x1) + (y2 − y1)

2
.

Finally,

1

r
+

1

BD
=

2

(x2 − x1) + (y2 − y1)
+

1

x1 + x2

=
2x1 + 2x2 + (x2 − x1) + (y2 − y1)

(x1 + x2)((x2 − x1) + (y2 − y1))
.

But we can write

2x1 + 2x2 + (x2 − x1) + (y2 − y1) = (x1 + x2 + x2 − x1) + (y1 + y2 + y2 − y1) = 2(x2 + y2),

and

(x1 + x2)((x2 − x1) + (y2 − y1)) = 2(x1 + x2)(x2 − y1)

= 2(x2(x2 + x1 − y1)− x1y1) = 2(x2y2 − x1y1).

Therefore
1

r
+

1

BD
=

2(x2 + y2)

2(x2y2 − x1y1)
=

1

r′
.

Remark: One can also choose B = (0, 0), A = (0, a) and C = (1, 0) and the coordinate geometry

proof gets reduced considerbly.
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6. Consider a non-constant arithmetic progression a1, a2, . . . , an, . . .. Suppose there exist relatively
prime positive integers p > 1 and q > 1 such that a21, a2p+1 and a2q+1 are also the terms of the same
arithmetic progression. Prove that the terms of the arithmetic progression are all integers.

Solution: Let us take a1 = a. We have

a2 = a+ kd, (a+ pd)2 = a+ ld, (a+ qd)2 = a+md.

Thus we have

a+ ld = (a+ pd)2 = a2 + 2pad+ p2d2 = a+ kd+ 2pad+ p2d2.

Since we have non-constant AP, we see that d 6= 0. Hence we obtain 2pa+ p2d = l − k. Similarly,
we get 2qa + q2d = m − k. Observe that p2q − pq2 6= 0. Otherwise p = q and gcd(p, q) = p > 1
which is a contradiction to the given hypothesis that gcd(p, q) = 1. Hence we can solve the two
equations for a, d:

a =
p2(m− k)− q2(l − k)

2(p2q − pq2)
, d =

q(l − k)− p(m− k)

p2q − pq2
.

It follows that a, d are rational numbers. We also have

p2a2 = p2a+ kp2d.

But p2d = l − k − 2pa. Thus we get

p2a2 = p2a+ k(l − k − 2pa) = (p− 2k)pa+ k(l − k).

This shows that pa satisfies the equation

x2 − (p− 2k)x− k(l − k) = 0.

Since a is rational, we see that pa is rational. Write pa = w/z, where w is an integer and z is a
natural numbers such that gcd(w, z) = 1. Substituting in the equation, we obtain

w2 − (p− 2k)wz − k(l − k)z2 = 0.

This shows z divides w. Since gcd(w, z) = 1, it follows that z = 1 and pa = w an integer. (In
fact any rational solution of a monic polynomial with integer coefficients is necessarily an integer.)
Similarly, we can prove that qa is an integer. Since gcd(p, q) = 1, there are integers u and v such
that pu+ qv = 1. Therefore a = (pa)u+ (qa)v. It follows that a is an integer.

But p2d = l−k−2pa. Hence p2d is an integer. Similarly, q2d is also an integer. Since gcd(p2, q2) = 1,
it follows that d is an integer. Combining these two, we see that all the terms of the AP are integers.

Alternatively, we can prove that a and d are integers in another way. We have seen that a and d
are rationals; and we have three relations:

a2 = a+ kd, p2d+ 2pa = n1, q2d+ 2qa = n2,

where n1 = l − k and n2 = m − k. Let a = u/v and d = x/y where u, x are integers and v, y are
natural numbers, and gcd(u, v) = 1, gcd(x, y) = 1. Putting this in these relations, we obtain

u2y = uvy + kxv2, (1)

2puy + p2vx = vyn1, (2)

2quy + q2vx = vyn2. (3)
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Now (1) shows that v|u2y. Since gcd(u, v) = 1, it follows that v|y. Similarly (2) shows that
y|p2vx. Using gcd(y, x) = 1, we get that y|p2v. Similarly, (3) shows that y|q2v. Therefore y divides
gcd(p2v, q2v) = v. The two results v|y and y|v imply v = y, since both v, y are positive.

Substitute this in (1) to get
u2 = uv + kxv.

This shows that v|u2. Since gcd(u, v) = 1, it follows that v = 1. This gives v = y = 1. Finally
a = u and d = x which are integers.
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