www.askiitians.com Email: info@askiitians.com Tel: 1800-2000-838 ## Regional Mathematical Olympiad-2017 Solutions 1. Let AOB be a given angle less than 180° and let P be an interior point of the angular region determined by $\angle AOB$. Show, with proof, how to construct, using only ruler and compasses, a line segment CD passing through P such that C lies on the ray OA and D lies on the ray OB, and CP : PD = 1 : 2. **Solution:** Draw a line parallel to OA through P. Let it intersect OB in M. Using compasses, draw an arc of a circle with centre M and radius MO to cut OB in L, $L \neq O$. Again with L as centre and with the same radius OM draw one more arc of a circle to cut OB in D, $D \neq M$. Join DP and extend it to meet OA in C. Then CD is the required line segment such that CP: PD = 1: 2. This follows from similar triangles OCD and MPD. 2. Show that the equation $$a^{3} + (a+1)^{3} + (a+2)^{3} + (a+3)^{3} + (a+4)^{3} + (a+5)^{3} + (a+6)^{3} = b^{4} + (b+1)^{4}$$ has no solutions in integers a, b. **Solution:** We use divisibility argument by 7. Observe that the remainders of seven consecutive cubes modulo 7 are 0, 1, 1, 6, 1, 6, 6 in some (cyclic) order. Hence the sum of seven consecutive cubes is 0 modulo 7. On the other hand the remainders of two consecutive fourth powers modulo 7 is one of the sets $\{0,1\}, \{1,2\}, \{2,4\}, \{4,4\}$. Hence the sum of two fourth powers is never divisible by 7. It follows that the given equation has no solution in integers. 3. Let $P(x) = x^2 + \frac{1}{2}x + b$ and $Q(x) = x^2 + cx + d$ be two polynomials with real coefficients such that P(x)Q(x) = Q(P(x)) for all real x. Find all the real roots of P(Q(x)) = 0. Solution: Observe that $$P(x)Q(x) = x^4 + \left(c + \frac{1}{2}\right)x^3 + \left(b + \frac{c}{2} + d\right)x^2 + \left(\frac{d}{2} + bc\right)x + bd.$$ Similarly, $$Q(P(x)) = \left(x^2 + \frac{1}{2}x + b\right)^2 + c\left(x^2 + \frac{1}{2}x + b\right) + d$$ $$= x^4 + x^3 + \left(2b + \frac{1}{4} + c\right)x^2 + \left(b + \frac{c}{2}\right)x + b^2 + bc + d.$$ Equating coefficients of corresponding powers of x, we obtain $$c + \frac{1}{2} = 1$$, $b + \frac{c}{2} + d = 2b + \frac{1}{4} + c$, $\frac{d}{2} + bc = b + \frac{c}{2}$, $b^2 + bc + d = bd$. Solving these, we obtain $$c = \frac{1}{2}, d = 0, b = \frac{-1}{2}.$$ Thus the polynomials are $$P(x) = x^2 + \frac{1}{2}x - \frac{1}{2}, \quad Q(x) = x^2 + \frac{1}{2}x.$$ Therefore, $$P(Q(x)) = \left(x^2 + \frac{1}{2}x\right)^2 + \frac{1}{2}\left(x^2 + \frac{1}{2}x\right) - \frac{1}{2}$$ $$= x^4 + x^3 + \frac{3}{4}x^2 + \frac{1}{4}x - \frac{1}{2}.$$ It is easy to see that $$P(Q(-1)) = 0, \quad P(Q(1/2)) = 0.$$ Thus (x+1) and (x-1/2) are factors of P(Q(x)). The remaining factor is $$h(x) = x^2 + \frac{1}{2}x + 1.$$ The discriminant of h(x) is D = (1/4) - 4 < 0. Hence h(x) = 0 has no real roots. Therefore the only real roots of P(Q(x)) = 0 are -1 and 1/2. 4. Consider n^2 unit squares in the xy-plane centred at point (i,j) with integer coordinates, $1 \le i \le n$, $1 \le j \le n$. It is required to colour each unit square in such a way that whenever $1 \le i < j \le n$ and $1 \le k < l \le n$, the three squares with centres at (i,k),(j,k),(j,l) have distinct colours. What is the least possible number of colours needed? **Solution:** We first show that at least 2n-1 colours are needed. Observe that squares with centres (i,1) must all have different colours for $1 \le i \le n$; let us call them C_1, C_2, \ldots, C_n . Besides, the squares with centres (n,j), for $2 \le j \le n$ must have different colours and these must be different from C_1, C_2, \ldots, C_n . Thus we need at least n + (n-1) = 2n - 1 colours. The following diagram shows that 2n-1 colours will suffice. | n | n+1 | n+2 | 2n-2 | 2n-1 | |-----|-----|-----|------|------| | n-1 | n | n+1 | 2n-3 | 2n-2 | 3 | 4 | 5 | n+1 | n+2 | | 2 | 3 | 4 | n | n+1 | | 1 | 2 | 3 | n-1 | n | 5. Let Ω be a circle with a chord AB which is not a diameter. Let Γ_1 be a circle on one side of AB such that it is tangent to AB at C and internally tangent to Ω at D. Likewise, let Γ_2 be a circle on the other side of AB such that it is tangent to AB at E and internally tangent to Ω at E. Suppose the line E intersects E at E and E intersects E at E and the line E intersects E at E and E intersects E at E and E intersects E at E and E intersects E and E intersects E at E intersects E and E intersects E and E intersects E intersects E and E intersects E intersects E and E intersects i **Solution:** Draw the tangent PQ at D such that D is between P and Q. Join D to A, B and C. Let $L = DA \cap \Gamma_1$ and $M = DB \cap \Gamma_1$. Join C to L and M. Observe that $$\angle ADP = \angle LMD = \angle ABD.$$ (1) Therefore LM is parallel to AB and hence $\angle LMC = \angle MCB$ (alternate angles). Again observe that $$\angle ADC = \angle LDC = \angle LMC = \angle MCB = \angle MDC = \angle BDC.$$ (2) Thus CD bisects $\angle ADB$. Hence X is the midpoint of the arc AB not containing D. Similarly Y is the midpoint of the arc AB not containing F. Thus the arc XY is half of the sum of two arcs that together constitute the circumference of Ω and hence it is a diameter. 6. Let x, y, z be real numbers, each greater than 1. Prove that $$\frac{x+1}{y+1} + \frac{y+1}{z+1} + \frac{z+1}{x+1} \leq \frac{x-1}{y-1} + \frac{y-1}{z-1} + \frac{z-1}{x-1}.$$ **Solution:** We may assume that $x = \max\{x, y, z\}$. There are two cases: $x \ge y \ge z$ and $x \ge z \ge y$. We consider both these cases. The inequality is equivalent to $$\left\{\frac{x-1}{y-1} - \frac{x+1}{y+1}\right\} + \left\{\frac{y-1}{z-1} - \frac{y+1}{z+1}\right\} + \left\{\frac{z-1}{x-1} - \frac{z+1}{x+1}\right\} \ge 0.$$ This is further equivalent to $$\frac{x-y}{y^2-1} + \frac{y-z}{z^2-1} + \frac{z-x}{x^2-1} \ge 0.$$ Suppose $x \ge y \ge z$. We write $$\frac{x-y}{y^2-1} + \frac{y-z}{z^2-1} + \frac{z-x}{x^2-1} = \frac{x-y}{y^2-1} + \frac{y-z}{z^2-1} + \frac{z-y+y-x}{x^2-1}.$$ This reduces to $$(x-y)\frac{(x^2-y^2)}{(x^2-1)(y^2-1)} + (y-z)\frac{(x^2-z^2)}{(x^2-1)(z^2-1)}.$$ Since $x \ge y$ and $x \ge z$, this sum is nonnegative. Suppose $x \geq z \geq y$. We write $$\frac{x-y}{y^2-1} + \frac{y-z}{z^2-1} + \frac{z-x}{x^2-1} = \frac{x-z+z-y}{y^2-1} + \frac{y-z}{z^2-1} + \frac{z-x}{x^2-1}.$$ This reduces to $$(x-z)\frac{(x^2-y^2)}{(x^2-1)(y^2-1)} + (z-y)\frac{(z^2-y^2)}{(y^2-1)(z^2-1)}.$$ Since $x \ge z$ and $z \ge y$, this sum is nonnegative. Thus $$\frac{x-y}{y^2-1} + \frac{y-z}{z^2-1} + \frac{z-x}{x^2-1} \geq 0$$ in both the cases. This completes the proof.